精英家教网 > 高中数学 > 题目详情
已知a>0,a≠1,解不等式loga(4+3x-x2)-loga(2x-1)>loga2.
分析:原不等式可化为loga(4+3x-x2)>loga2(2x-1).当0<a<1时,需要满足
4+3x-x2>0
2(2x-1)>0
4+3x-x2<2(2x-1)
,解这个不等式组可求出当0<a<1时原不等式的解集;当a>1时,需要满足
4+3x-x2>0
2(2x-1)>0
4+3x-x2>2(2x-1)
,解这个不等式组可求出a>1原不等式的解集.
解答:解:原不等式可化为
loga(4+3x-x2)>loga2(2x-1).①
当0<a<1时,①式等价于
4+3x-x2>0
2(2x-1)>0
4+3x-x2<2(2x-1)
?
4+3x-x2>0
4+3x-x2<2(2x-1)
,解得
-1<x<4
x<-3或x>2

即当0<a<1时,原不等式的解集是{x|2<x<4}.
当a>1时,①式等价于
4+3x-x2>0
2(2x-1)>0
4+3x-x2>2(2x-1)
,∴
x>
1
2
-3<x<2
,∴
1
2
<x<2

即当a>1时,原不等式的解集是{x|
1
2
<x<2}

综上所述,当0<a<1时,原不等式的解集是{x|2<x<4};当a>1时,原不等式的解集是{x|
1
2
<x<2}
点评:本小题考查对数,不等式的基本知识及运算能力.解题时要多一份耐心和细心,避免出现不必要的错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0且a≠1,设p:函数y=ax在R上单调递增,q:设函数y=
2x-2a,(x≥2a)
2a,(x<2a)
,函数y≥1恒成立,若p∧q为假,p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知双曲线C的中心在原点,D(1,0)是它的一个顶点,
d
=(1,
2
)
是它的一条渐近线的一个方向向量.
(1)求双曲线C的方程;
(2)若过点(-3,0)任意作一条直线与双曲线C交于A,B两点 (A,B都不同于点D),求证:
DA
DB
为定值;
(3)对于双曲线Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E为它的右顶点,M,N为双曲线Γ上的两点(都不同于点E),且EM⊥EN,那么直线MN是否过定点?若是,请求出此定点的坐标;若不是,说明理由.然后在以下三个情形中选择一个,写出类似结论(不要求书写求解或证明过程).
情形一:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左顶点;
情形二:抛物线y2=2px(p>0)及它的顶点;
情形三:椭圆
x2
a2
+
y2
b2
=1(a>b>0)
及它的顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:普陀区二模 题型:解答题

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
1
1-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)若关于x的方程F(x)-m=0在区间[0,1)内有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案