精英家教网 > 高中数学 > 题目详情
设n∈{-1,,1,2,3},则使得f(x)=xn为奇函数,且在(0,+∞)上单调递减的n的个数是  
[     ]
A.1      
B.2      
C.3      
D.4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•上海)设n阶方阵
An=
1          3           5         …    2n-1
2n+1  2n+3  2n+5  …  4n-1
4n+1  4n+3  4n+5  …  6n-1
…        …         …            …       …
2n(n-1)+1  2n(n-1)+3  2n(n-1)+5  …  2n2-1

任取An中的一个元素,记为x1;划去x1所在的行和列,将剩下的元素按原来的位置关系组成n-1阶方阵An-1,任取An-1中的一个元素,记为x2;划去x2所在的行和列,…;将最后剩下的一个元素记为xn,记Sn=x1+x2+…+xn,则Sn=x1+x2+…+xn,则
lim
n→∞
Sn
n3+1
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)设函数fn(x)=xn+bx+c(n∈N*,b,c∈R)
(1)当n=2,b=1,c=-1时,求函数fn(x)在区间(
1
2
,1)
内的零点;
(2)设n≥2,b=1,c=-1,证明:fn(x)在区间(
1
2
,1)
内存在唯一的零点;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)设Xn={1,2,3…n}(n∈N*),对Xn的任意非空子集A,定义f(A)为A中的最大元素,当A取遍Xn的所有非空子集时,对应的f(A)的和为Sn,则Sn=
(n-1)2n+1
(n-1)2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

设n是自然数,fn(x)=
xn+1-x-n-1
x-x-1
(x≠0,±1),令y=x+
1
x

(1)求证:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用数学归纳法证明:
fn(x)=
yn-
C
1
n-1
yn-2+…+(-1)i
C
i
n-i
yn-2i+…+(-1)
n
2
,(i=1,2,…,
n
2
,n我偶数)
yn-
C
1
n-1
yn-2+…+(-1)i
C
i
n-i
+…+(-1)
n-1
2
C
n-1
2
n+1
2
y,(i=1,2,…,
n-1
2
,n为奇数)
 
 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设n是自然数,fn(x)=
xn+1-x-n-1
x-x-1
(x≠0,±1),令y=x+
1
x

(1)求证:fn+1(x)=yfn(x)-fn-1(x),(n>1)
(2)用数学归纳法证明:
fn(x)=
yn-
C1n-1
yn-2+…+(-1)i
Cin-i
yn-2i+…+(-1)
n
2
,(i=1,2,…,
n
2
,n我偶数)
yn-
C1n-1
yn-2+…+(-1)i
Cin-i
+…+(-1)
n-1
2
C
n-1
2
n+1
2
y,(i=1,2,…,
n-1
2
,n为奇数)
   

查看答案和解析>>

同步练习册答案