精英家教网 > 高中数学 > 题目详情
(2013•崇明县一模)设函数fn(x)=xn+bx+c(n∈N*,b,c∈R)
(1)当n=2,b=1,c=-1时,求函数fn(x)在区间(
1
2
,1)
内的零点;
(2)设n≥2,b=1,c=-1,证明:fn(x)在区间(
1
2
,1)
内存在唯一的零点;
(3)设n=2,若对任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范围.
分析:(1)f2(x)=x2+x-1,令f2(x)=0,得到f2(x)在区间(
1
2
,1)内的零点.
(2)由fn(
1
2
)<0
,fn(1)>0.知fn(
1
2
)•
fn(1)<0.从而得到fn(x)在(
1
2
,1)
内存在零点.利用定义法推导出fn(x)在(
1
2
,1)
内单调递增,由此能够证明fn(x)在(
1
2
,1)
内存在唯一零点.
(3)当n=2时,f2(x)=x2+bx+c.对任意x1,x2∈[-1,1]都有|f2(x1)-f2(x2)|≤4,等价于f2(x)在[-1,1]上的最大值与最小值之差M≤4.由此进行分类讨论能求出b的取值范围.
解答:解:(1)f2(x)=x2+x-1
令f2(x)=0,得x=
-1±
5
2

所以f2(x)在区间(
1
2
,1)内的零点是x=
-1+
5
2

(2)证明:因为 fn(
1
2
)<0
,fn(1)>0.
所以fn(
1
2
)•
fn(1)<0.
所以fn(x)在(
1
2
,1)
内存在零点.
任取x1,x2∈(
1
2
,1),且x1<x2
则fn(x1)-fn(x2)=(x1n-x2n)+(x1-x2)<0,
所以fn(x)在(
1
2
,1)
内单调递增,
所以fn(x)在(
1
2
,1)
内存在唯一零点.
(3)当n=2时,f2(x)=x2+bx+c.
对任意x1,x2∈[-1,1]都有|f2(x1)-f2(x2)|≤4,
等价于f2(x)在[-1,1]上的最大值与最小值之差M≤4.
据此分类讨论如下:
①当|
b
2
|>1
,即|b|>2时,M=|f2(1)-f2(-1)|=2|b|>4,与题设矛盾.
②当-1≤-
b
2
<0,即0<b≤2时,M=f2(1)-f2-
b
2
)=(
b
2
+1)2≤4恒成立.
③当0≤-
b
2
≤1,即-2≤b≤0时,M=f2(-1)-f2-
b
2
)=(
b
2
-1)2≤4恒成立.
综上可知,-2≤b≤2.
点评:本题考查函数的零点的求法,考查函数有唯一零点的证明,考查满足条件的实数的取值范围的求法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•崇明县一模)(x2-
1x
)5
展开式中x4的系数是
10
10
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)已知数列{an},记A(n)=a1+a2+a3+…+an,B(n)=a2+a3+a4+…+an+1,C(n)=a3+a4+a5+…+an+2,(n=1,2,3,…),并且对于任意n∈N*,恒有an>0成立.
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式;
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)设复数z(2-i)=11+7i(i为虚数单位),则z=
3+5i
3+5i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)若圆锥的侧面展开图是半径为1cm、圆心角为180°的半圆,则这个圆锥的轴截面面积等于
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)数列{an}的通项公式是an=
1
n+1
 (n=1,2)
1
3n
 (n>2)
,前n项和为Sn,则
lim
n→∞
Sn
=
8
9
8
9

查看答案和解析>>

同步练习册答案