精英家教网 > 高中数学 > 题目详情
(2013•崇明县一模)若圆锥的侧面展开图是半径为1cm、圆心角为180°的半圆,则这个圆锥的轴截面面积等于
3
4
3
4
分析:根据题意,该圆锥的底面半径r与满足关系式:2πr=
1
2
×2π×1,由此解出r=
1
2
.再由勾股定理算出高h之值,利用三角形面积公式即可得到该圆锥的轴截面面积.
解答:解:设该圆锥的底面半径为r,高为h,母线为l
∵圆锥的侧面展开图是半径为1cm、圆心角为180°的半圆,
∴母线l=1,且2πr=
1
2
×2π×1,解之得r=
1
2

∵r2+h2=l2,∴高h=
l2-r2
=
3
2

∵圆锥的轴截面是以底面直径为底,圆的高为高的等腰三角形
∴该圆锥的轴截面面积S=
1
2
×2r×h=
3
4

故答案为:
3
4
点评:本题给出圆锥的侧面展开图的形状和大小,求圆锥轴截面的面积,着重考查了圆锥的轴截面和圆锥的侧面展开图的认识等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•崇明县一模)(x2-
1x
)5
展开式中x4的系数是
10
10
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)已知数列{an},记A(n)=a1+a2+a3+…+an,B(n)=a2+a3+a4+…+an+1,C(n)=a3+a4+a5+…+an+2,(n=1,2,3,…),并且对于任意n∈N*,恒有an>0成立.
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式;
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)设复数z(2-i)=11+7i(i为虚数单位),则z=
3+5i
3+5i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)数列{an}的通项公式是an=
1
n+1
 (n=1,2)
1
3n
 (n>2)
,前n项和为Sn,则
lim
n→∞
Sn
=
8
9
8
9

查看答案和解析>>

同步练习册答案