Èçͼ£¬ÍÖÔ²C1£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ
3
2
£¬xÖá±»ÇúÏßC2£ºy=x2-b½ØµÃµÄÏ߶㤵ÈÓÚC1µÄ³¤°ëÖ᳤£®
£¨1£©ÇóC1£¬C2µÄ·½³Ì£»
£¨2£©ÉèC2ÓëyÖáµÄ½»µãΪM£¬¹ý×ø±êÔ­µãOµÄÖ±ÏßlÓëC2ÏཻÓÚµãA£¬B£¬Ö±ÏßMA£¬MB·Ö±ðÓëC1ÏཻÓëD£¬E£®
£¨i£©Ö¤Ã÷£ºMA¡ÍMB£»
£¨ii£©¼Ç¡÷MAB£¬¡÷MDEµÄÃæ»ý·Ö±ðÊÇS1£¬S2£®ÎÊ£ºÊÇ·ñ´æÔÚÖ±Ïßl£¬Ê¹µÃ
S1
S2
=
17
32
£¿Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÌâÒâÖªe=
c
a
=
3
2
£¬2
b
=a
£¬ÓÉ´ËÄÜÇó³öC1£¬C2µÄ·½³Ì£®
£¨2£©£¨i£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£®ÓÉ
y=kx
y=x2-1
µÃx2-kx-1=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷MA¡ÍMB£®
£¨ii£©ÉèÖ±ÏßµÄбÂÊΪk1£¬ÔòÖ±Ïߵķ½³ÌΪy=k1x-1£¬ÓÉ
y=k1x-1
y=x2-1
£¬µÃµãA(k1£¬k12-1)£¬ÓÉʱB(-
1
k1
£¬
1
k12
-1)
£®ÓÚÊÇS1=
1
2
|MA|•|MB|=
1
2
1+k12
•|k1|•
1+
1
k12
•|-
1
k1
|=
1+k12
2|k1|
£¬Í¬ÀíS2=
1
2
|MD|•|ME|=
32(1+k12)•|k1|
(1+4k12)(4+k12)
£¬ÓÉÌâÒâÖª£¬
1
64
(4k12+
1
k12
+17)=
17
32
£¬ÓÉ´ËÇó³öÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬Æä·½³Ì·Ö±ðΪy=
3
2
x
ºÍy=-
3
2
x
£®
½â´ð£º £¨1£©½â£ºÓÉÌâÒâÖªe=
c
a
=
3
2
£¬
´Ó¶øa=2b£¬ÓÖ2
b
=a
£¬½âµÃa=2£¬b=1£®
¹ÊC1£¬C2µÄ·½³Ì·Ö±ðΪ
x2
4
+y2=1£¬y=x2-1
£®£¨4·Ö£©
£¨2£©£¨i£©Ö¤Ã÷£ºÓÉÌâÒâÖª£¬Ö±ÏßlµÄбÂÊ´æÔÚ£¬
ÉèΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx£®
ÓÉ
y=kx
y=x2-1
µÃx2-kx-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx1£¬x2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬
ÓÚÊÇx1+x2=k£¬x1x2=-1£¬£¨5·Ö£©
ÓÖµãMµÄ×ø±êΪ£¨0£¬-1£©£¬
¡àkMAkMB=
y1+1
x1
y2+1
x2
=
(kx1+1)(kx2+1)
x1x2

=
k2x1x2+k(x1+x2)+1
x1x2
=
-k2+k2+1
-1
=-1
£¬£¨7·Ö£©
¹ÊMA¡ÍMB£¬µÃÖ¤£®
£¨ii£©½â£ºÉèÖ±ÏßµÄбÂÊΪk1£¬
ÔòÖ±Ïߵķ½³ÌΪy=k1x-1£¬
ÓÉ
y=k1x-1
y=x2-1
£¬½âµÃ
x=0
y=-1
»ò
x=k1
y=k12-1
£¬
ÔòµãAµÄ×ø±êΪ(k1£¬k12-1)
ÓÖÖ±ÏßMBµÄбÂÊΪ-
1
k1
£¬
ͬÀí¿ÉµÃµãBµÄ×ø±êΪ(-
1
k1
£¬
1
k12
-1)
£®
ÓÚÊÇS1=
1
2
|MA|•|MB|=
1
2
1+k12
•|k1|•
1+
1
k12
•|-
1
k1
|=
1+k12
2|k1|
£®£¨8·Ö£©
ÓÉ
y=k1x-1
x2+4y2-4=0
£¬µÃ(1+4k12)x2-8k1x=0£¬
½âµÃ
x=0
y=-1
»ò
x=
8k1
1+4k12
y=
4k12-1
1+4k12
£¬
ÔòµãDµÄ×ø±êΪ(
8k1
1+4k12
£¬
4k12-1
1+4k12
)
£¬
ÓÖÖ±ÏßµÄбÂÊΪ-
1
k1
£¬Í¬Àí¿ÉµÃµãEµÄ×ø±ê(
-8k1
4+k12
£¬
4-k12
4+k12
)
£¬
ÓÚÊÇS2=
1
2
|MD|•|ME|=
32(1+k12)•|k1|
(1+4k12)(4+k12)
£¬£¨10·Ö£©
Òò´Ë
S1
S2
=
1
64
(4k12+
1
k12
+17)
£¬£¨12·Ö£©
ÓÉÌâÒâÖª£¬
1
64
(4k12+
1
k12
+17)=
17
32
£¬
½âµÃk12=4£¬»òk12=
1
4
£®£¨12·Ö£©
ÓÖÓɵãA£¬BµÄ×ø±ê¿ÉÖª£¬k=
k12-
1
k12
k1+
1
k1
=k1-
1
k1
£¬¡àk=¡À
3
2
£®
¹ÊÂú×ãÌõ¼þµÄÖ±Ïßl´æÔÚ£¬ÇÒÓÐÁ½Ìõ£¬
Æä·½³Ì·Ö±ðΪy=
3
2
x
ºÍy=-
3
2
x
£®£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éÍÖÔ²·½³ÌºÍÇúÏß·½³ÌµÄÇ󷨣¬¿¼²éÂú×ãÌõ¼þµÄÖ±Ïß·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶Ô¼×¡¢ÒÒµÄѧϰ³É¼¨½øÐгéÑù·ÖÎö£¬¸÷³é4ÃŹ¦¿Î£¬µÃµ½µÄ¹Û²ìÖµÈçÏ£º
¼×£º50£¬75£¬85£¬90    ÒÒ£º85£¬60£¬65£¬82
ÎÊ£º¼×¡¢ÒÒÁ½ÈËË­µÄ³É¼¨ºÃ£¿Ë­µÄ¸÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ£¿
£¨·½²î¹«Ê½S2=
1
n
[£¨x1-
.
x
£©2+£¨x2-
.
x
£©2+¡Ä+£¨xn-
.
x
£©2]£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lgx+
1
2-x

£¨1£©Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÔÚ£¨2£¬+¡Þ£©ÉÏΪÔöº¯Êý£»
£¨3£©µ±x¡Ê[3£¬5]ʱ£¬Çóº¯ÊýµÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=|x-a|-lnx£¨a£¾0£©£®
£¨1£©Èôa£¾0£¬ÌÖÂÛf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôa=1£¬Çóf£¨x£©µÄ×îСֵ£»
£¨3£©Ö¤
ln22
22
+
ln32
32
+¡­+
lnn2
n2
+
ln(n+1)2
(n+1)2
£¼n-£¨
1
2
-
1
n+2
£©£¨n¡ÊN*£¬ÇÒn¡Ý2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇóÏÂÁк¯ÊýµÄµ¼Êý
£¨1£©y=2x3-x+
1
x
£»
£¨2£©y=£¨1+sinx£©£¨1-2x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨1£¬cosx£©£¬
b
=£¨
1
3
£¬sinx£©£¬x¡Ê£¨0£¬¦Ð£©£®   
£¨¢ñ£©Èô
a
¡Î
b
£¬·Ö±ðÇótanxºÍ
sinx+cosx
sinx-cosx
掙术
£¨¢ò£©Èô
a
¡Í
b
£¬Çósinx-cosxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¶þÏîÕ¹¿ªÊ½£¨2x-1£©5=a0x5+a1x4+a2x3+a3x2+a4x+a5ÖУ¬Ôòa0+a1+a2+a3+a4+a5=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x+1£©ÊÇżº¯Êý£¬f£¨x+2£©ÊÇÆæº¯Êý£¬µ±0¡Üx¡Ü1ʱ£¬f£¨x£©=2x-1£¬Ôòf£¨log21008£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ×é
x+y¡Ü6
x¡Ý0
y¡Ý0
±íʾµÄÆ½ÃæÇøÓòµÄÃæ»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸