精英家教网 > 高中数学 > 题目详情
对甲、乙的学习成绩进行抽样分析,各抽4门功课,得到的观察值如下:
甲:50,75,85,90    乙:85,60,65,82
问:甲、乙两人谁的成绩好?谁的各门功课发展较平衡?
(方差公式S2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+∧+(xn-
.
x
2])
考点:极差、方差与标准差
专题:计算题,概率与统计
分析:先求出甲和乙的平均数,再求出甲和乙的方差,结果甲的平均数大于乙的平均数,甲的方差大于乙的方差,得到结论.
解答: 解:
.
x
=
1
4
(50+75+85+90)=75,
.
x
=
1
4
(85+60+65+82)=73
s2=
1
4
(225+100+225)=137.5,s2=
1
4
(144+169+64+81)=114.5
.
x
.
x
,s2>s2
∴甲的平均成绩较好,乙的各门功课发展较平衡.
点评:本题考查平均数和方差,对于两组数据一般从稳定程度和平均水平两个方面来观察两组数据,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2-2ax在区间[0,2]的最小值为g(a),则g(a)的最大值等于(  )
A、-4B、-1C、0D、无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生正确解答选择题﹑填空题﹑解答题这三种题型的概率分别为0.6﹑0.5﹑0.5,且解答每种题型正确与否相互独立,现在让该生解选择题﹑填空题﹑解答题各一个,并用ξ表示解对题的个数.
(Ⅰ)求该生至少解对一个题的概率.
(Ⅱ)求ξ的分布列和数字期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinα,1),
b
=(1,cosα),
c
=(1,2),其中α∈[0,x].
(1)若
a
c
,求c的值;
(2)若
b
•(
a
+
c
)=1,求2sin2α-4sinαcosα+1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=2px(p>0)上横坐标为
3
2
的点到焦点F的距离为2.
(1)求抛物线方程;
(2)过抛物线的焦点F,作互相垂直的两条弦AB和CD,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx-bx2(x>0),若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[
1
e
,e]上的最大值;
(3)已知函数g(x)=x3+3m2x+2m-
3
2
(m为实数),若对任意x1∈[
1
e
,e],x2∈[0,1],总有f(x1)<g(x2)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求出焦点到准线的距离是2的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
1
7
,cos(α-β)=
13
14
,且0<β<α<
π
2

(1)求tanα的值;
(2)求β.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求C1,C2的方程;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交与D,E.
(i)证明:MA⊥MB;
(ii)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得
S1
S2
=
17
32
?请说明理由.

查看答案和解析>>

同步练习册答案