精英家教网 > 高中数学 > 题目详情
6.已知四边形ABCD,∠A=∠C=90°,∠B=60°,AC=$\sqrt{15}$,求BD的长.

分析 以BD为直径做圆O,则A,B,C,D四点共圆,连结OA,OC,在△AOC中使用余弦定理求出圆的半径,继而得到直径的长.

解答 解:以BD为直径做圆O,∵∠A=∠C=90°,∴A,C在圆O上,连结OA,OC,
∵∠B=60°,∴∠AOC=120°,
设圆O半径为r,则OA=OC=r,BD=2r.
在△AOC中,由余弦定理得AC2=OA2+OC2-2OA•OCcos120°,
即r2+r2+r2=15,∴r=$\sqrt{5}$.
∴BD=2r=2$\sqrt{5}$.

点评 本题考查了余弦定理的应用,作出辅助圆是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件;则下列结论中正确的是:①②⑤.
①P(B)=$\frac{9}{22}$;②P(B|A1)=$\frac{5}{11}$;③事件B与事件A1相互独立;④P(B)的值不能确定,因为它与A1,A2和A3中哪一个发生有关;⑤事件A1,A2和A3两两互斥.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知某一段公路限速70公里/小时,现抽取400辆通过这一段公路的汽车的时速,其频率分布直方图如图所示,则这400辆汽车中在该路段超速的有80辆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若过点P(a,b)(b≠a3-3a)可作曲线f(x)=x3-3x的切线恰有两条,则(a-1)2+(b-2)2的最小值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在正面体ABCD-A1B1C1D1中,AD1∩A1D=O,则线段CO在平面AD1内的射影是(  )
A.线段DOB.线段D1OC.线段A1OD.线段AO

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{lnx}{x}$-x+$\frac{a}{x}$(a∈R).
(1)当a=0时,求证:函数f(x)有且仅有一个极值点;
(2)若对于任意的x1,x2∈[e,+∞]且x1≠x2,有不等式$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<-1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若AB∥A′B′,AC∥A′C′,则有(  )
A.∠BAC=∠B′A′C′
B.∠BAC+∠B′A′C′=180°
C.∠BAC=∠B′A′C′或∠BAC+∠B′A′C′=180°
D.∠BAC>∠B′A′C′

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\sqrt{{x}^{2}}$是(  )
A.偶函数B.奇函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司有员工100人,其中男员工60名,女员工40名,为了了解员工的业务水平,公司按照性别采用分层抽样的方法抽取5人进行考核.
(I)求抽取的5人中男、女员工的人数;
(Ⅱ)考核前.评估小组打算从选出的5人中随机选出2名员工进行访谈,求选出的两名员工中恰有一名女员工的概率;(Ⅲ)考核分答辩和笔试两项,5位员工的笔试成绩分别为115,125,105,111,109;结合答辩情况,他们的考核成绩分别为125,130,115,121,119.这5位员工笔试成绩与考核成绩的方差分别记为${s}_{1}^{2}$,s${\;}_{2}^{2}$,试比较s${\;}_{1}^{2}$与s${\;}_{2}^{2}$的大小.

查看答案和解析>>

同步练习册答案