分析 (1)求出函数的对数,通过判断函数的单调性得出f(x)在(0,1)递增,在(1,+∞)递减,从而判断函数f(x)有且仅有一个极值点;
(2)问题转化为a>-x2-lnx-2在[e,+∞)恒成立,令g(x)=-x2-lnx-2,通过求导得到g(x)的最大值,从而求出a的范围即可.
解答 (1)证明:a=0时,f(x)=$\frac{lnx}{x}$-x,(x>0),
f′(x)=$\frac{{-x}^{2}-lnx+1}{{x}^{2}}$,
令h(x)=-x2-lnx+1
h′(x)=-2x-$\frac{1}{x}$<0,
∴f′(x)在(0,+∞)单调递减,
而f′(1)=0,
∴x∈(0,1)时,f′(x)>0,x∈(1,+∞)时,f′(x)<0,
∴f(x)在(0,1)递增,在(1,+∞)递减,
∴函数f(x)有且仅有一个极值点;
(2)解:f′(x)=$\frac{1-lnx}{{x}^{2}}$-1-$\frac{a}{{x}^{2}}$=$\frac{{-x}^{2}-lnx+1-a}{{x}^{2}}$,(x>0)
若对于任意的x1,x2∈[e,+∞]且x1≠x2,有不等式$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<-1恒成立,
即-x2-lnx+1-a<-1在x∈[e,+∞)恒成立,
即a>-x2-lnx-2在[e,+∞)恒成立,
令g(x)=-x2-lnx-2,g′(x)=-2x-$\frac{1}{x}$<0,
∴g(x)在[e,+∞)递减,g(x)最大值=g(e)=-e2-3,
∴a>-e2-3.
点评 本题考查了函数的单调性.极值问题,考查导数的应用,函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x0<1<x0 | B. | x0<2x0<1 | C. | 1<x0<2x0 | D. | x0<1<2x0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-$\frac{5π}{12}$ | B. | x=$\frac{5π}{12}$ | C. | x=-$\frac{7π}{6}$ | D. | x=$\frac{7π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com