| A. | 2x0<1<x0 | B. | x0<2x0<1 | C. | 1<x0<2x0 | D. | x0<1<2x0 |
分析 先判断函数ff(x)=2x-log0.5x的零点所在区间,我们可以利用零点存在定理,即函数f(x)在区间(a,b)上若f(a)•(b)<0,则函数f(x)在区间(a,b)上有零点,再根据指数函数的性质即可判断.
解答 解:∵f(x)=2x-log0.5x在其定义域为单调增函数,
f($\frac{1}{2}$)=$,\sqrt{2}$-1>0,f($\frac{1}{4}$)=${2}^{\frac{1}{4}}$-log0.5$\frac{1}{4}$=${2}^{\frac{1}{4}}$-2<0,
∴f($\frac{1}{4}$)f($\frac{1}{2}$)<0,
∴函数f(x)零点在($\frac{1}{4}$,$\frac{1}{2}$)上,
即x0∈($\frac{1}{4}$,$\frac{1}{2}$),
∴2x0>1,
∴x0<1<2x0
故选:D.
点评 本题考查的知识点是根的存在性及根的个数判断,牢固掌握零点存在定理,即函数f(x)在区间(a,b)上若f(a)•(b)<0,则函数f(x)在区间(a,b)上有零点,是解答本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | 4 | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>2或m<-$\frac{4}{3}$ | B. | -$\frac{4}{3}$<m<2 | C. | m≠2 | D. | m≠2且m≠-$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+1 | B. | a+$\frac{3}{4}$ | C. | a2+1 | D. | $\frac{3}{4}$-a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com