精英家教网 > 高中数学 > 题目详情
3.曲线$y=cosx(-\frac{π}{2}<x<π)$与x轴围成的面积是(  )
A.1B.2C.3D.4

分析 首先利用定积分表示封闭图形的面积,然后计算即可.

解答 解:曲线$y=cosx(-\frac{π}{2}<x<π)$与x轴围成的面积是:$3{∫}_{0}^{\frac{π}{2}}cosxdx=3sinx{|}_{0}^{\frac{π}{2}}$=3;
故选C.

点评 本题考查了运用定积分求封闭图形的面积,关键是正确利用定积分表示出面积,然后正确计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知两圆x2+y2=10和(x-1)2+(y-a)2=20相交于A、B两个不同的点,且直线AB与直线3x-y+1=0垂直,则实数a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若0<α<2π且cosα≤$\frac{1}{2}$,sinα>$\frac{\sqrt{2}}{2}$,则角α的取值范围是(  )
A.[$\frac{π}{3}$,$\frac{3}{4}$π)B.($\frac{π}{3}$,$\frac{3}{4}$π]C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{3}$,$\frac{3}{4}$π)∪($\frac{π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)求证:$\frac{1-2sinxcosx}{{{{cos}^2}x-{{sin}^2}x}}=\frac{1-tanx}{1+tanx}$
(2)已知tanθ+sinθ=a,tanθ-sinθ=b,求证:(a2-b22=16ab.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图的等高条形图可以说明的问题是(  )
A.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的
B.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同
C.此等高条形图看不出两种手术有什么不同的地方
D.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义域为R的函数f(x)满足f(x-2)=-f(x)且f(x)=$\left\{\begin{array}{l}{\sqrt{1{-(x-1)}^{2}},x∈[0,2)}\\{2-2|x-3|,x∈[2,4)}\end{array}\right.$,则关于x的方程5f(x)=x的实数解个数为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△OMN中,点A在OM上,点B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则终点P落在四边形ABNM内(含边界)时,$\frac{y+x+2}{x+1}$的取值范围为[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别PM2.5浓度(微克/立方米)频数(天)频率
第一组(0,25]30.15
第二组(25,50]120.6
第三组(50,75]30.15
第四组(75,100]20.1
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求频率分布直方图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,一个几何体的三视图如图所示(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为a的正方形,则其外接球的体积为(  )
A.$\frac{{\sqrt{3}}}{2}π{a^3}$B.$\frac{{\sqrt{3}}}{2}a$C.$\frac{1}{2}{a^3}$D.$\frac{1}{2}π{a^3}$

查看答案和解析>>

同步练习册答案