(97理科)定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式
①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a),
其中成立的是
(A)①与④ (B)②与③ (C)①与③ (D)②与④
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.
(1)求证:方程f(x)=0有且只有一个实根;
(2)若a>b>c>1,且a、b、c成等差数列,求证:;
(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:
查看答案和解析>>
科目:高中数学 来源:2007年高考数学综合模拟试卷(二)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
(97理科)定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式
①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a),
其中成立的是
(A)①与④ (B)②与③ (C)①与③ (D)②与④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com