精英家教网 > 高中数学 > 题目详情

定义在区间(0,)上的函f(x)满足:(1)f(x)不恒为零;(2)对任何实数x、q,都有.

(1)求证:方程f(x)=0有且只有一个实根;

(2)若a>b>c>1,且a、b、c成等差数列,求证:

(3)(本小题只理科做)若f(x) 单调递增,且m>n>0时,有,求证:

证明见解析


解析:

(1)取x=1,q=2,有

若存在另一个实根,使得

(2)

,则0,,又a+c=2b,

∴ac-b=

即ac<b

(3)

令m=b,n=,b且q

则f(m)+f(n)=(qf(b)=f(mn)=0

即4m=,由0<n<1得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2)
,且当x>1时f(x)<0.
(1)求f(1)的值
(2)判断f(x)的单调性
(3)若f(3)=-1,解不等式f(|x|)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
①求f(1)的值;
②判断f(x)的单调性;
③若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1x2
)=f(x1)-f(x2)
,且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性并予以证明;
(3)若f(3)=-1,解不等式f(log2x)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在区间(0,+∞)上的函数f(x)满足对任意的实数x,y都有f(xy)=yf(x)
(Ⅰ)求f(1)的值;
(Ⅱ)若f(
1
2
)<0
,求证:f(x)在(0,+∞)上是增函数;
(Ⅲ)若f(
1
2
)<0
,解不等式f(|3x-2|-2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间(0,+∞)上的函数f(x)满足:对?x1,x2∈(0,+∞)恒有f(
x1x2
)=f(x1)-f(x2)
,且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)证明:函数f(x)在区间(0,+∞)上为单调递减函数;
(3)若f(3)=-1,
(ⅰ)求f(9)的值;(ⅱ)解不等式:f(3x)<-2.

查看答案和解析>>

同步练习册答案