精英家教网 > 高中数学 > 题目详情
2.已知f(α)=$\frac{sin(\frac{π}{2}-α)cos(2π-α)tan(-α+3π)}{tan(π+α)sin(\frac{π}{2}+α)}$,
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

分析 (1)由条件利用诱导公式化简f(α),可得结果.
(2)由条件利用诱导公式求得 sinα 的值,再利用同角三角函数的基本关系求得cosα,可得f(α)的值.
(3)利用诱导公式求得f(α)的值.

解答 解:(1)f(α)=$\frac{sin(\frac{π}{2}-α)cos(2π-α)tan(-α+3π)}{tan(π+α)sin(\frac{π}{2}+α)}$=$\frac{cosα•cosα•(-tanα)}{tanα•cosα}$=-cosα.
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.
(3)∵α=-1860°,∴f(α)=-cos(-1860°)=-cos1860°=-cos60°=-$\frac{1}{2}$.

点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知三次方程x3-6x2+11x-6=0,有一根是另一根的2倍,求该方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数y=sin2x的图象向左平移$\frac{π}{6}$,然后把所有图象上各点的横坐标伸长到原来的2倍,所得图象的解析式为(  )
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x+$\frac{π}{3}$)C.y=sin(4x+$\frac{π}{6}$)D.y=sin(4x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若三点A(2,-3),B(4,3),C(5,k)在同一条直线上,则实数k=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C的对边分别为a、b、c,已知3cos2C-10cos(A+B)-1=0.
(1)求cosC;
(2)若c=1,cosA+cosB=$\frac{2\sqrt{3}}{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组函数中,是同一函数的是(  )
A.y=$\sqrt{-2{x}^{3}}$与y=x$\sqrt{-2x}$B.y=($\sqrt{x}$)2与y=|x|
C.y=$\sqrt{x+2}$•$\sqrt{x-2}$与y=$\sqrt{(x+2)(x-2)}$D.f(x)=x2-2x-1与g(x)=x2-2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集I={x||x-1|≤4,x∈Z},集合A,B?I,若A∩∁IB={x|x2+5x+6=0},∁IA∩B={x|x>1},求A的子集个数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合P={y|y=3x-1,x>1},Q={y|y=-2x2+10,x∈R},则P∩Q=(2,10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A=(-∞,a+1],集合B=(a-1,+∞),则A∩B=(a-1,a+1].

查看答案和解析>>

同步练习册答案