分析 (1)由条件利用诱导公式化简f(α),可得结果.
(2)由条件利用诱导公式求得 sinα 的值,再利用同角三角函数的基本关系求得cosα,可得f(α)的值.
(3)利用诱导公式求得f(α)的值.
解答 解:(1)f(α)=$\frac{sin(\frac{π}{2}-α)cos(2π-α)tan(-α+3π)}{tan(π+α)sin(\frac{π}{2}+α)}$=$\frac{cosα•cosα•(-tanα)}{tanα•cosα}$=-cosα.
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{2\sqrt{6}}{5}$,
∴f(α)=-cosα=$\frac{2\sqrt{6}}{5}$.
(3)∵α=-1860°,∴f(α)=-cos(-1860°)=-cos1860°=-cos60°=-$\frac{1}{2}$.
点评 本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | y=sin(x+$\frac{π}{6}$) | B. | y=sin(x+$\frac{π}{3}$) | C. | y=sin(4x+$\frac{π}{6}$) | D. | y=sin(4x+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{-2{x}^{3}}$与y=x$\sqrt{-2x}$ | B. | y=($\sqrt{x}$)2与y=|x| | ||
| C. | y=$\sqrt{x+2}$•$\sqrt{x-2}$与y=$\sqrt{(x+2)(x-2)}$ | D. | f(x)=x2-2x-1与g(x)=x2-2x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com