(1)求证:数列{
}是等差数列;
(2)记Sn(x)=
,求Sn(x).
解:(1)由已知得:an+1=![]()
∴![]()
∴{
}是首项为1,公差d=3的等差数列
(2)由(1)得
=1+(n-1)3=3n-2
∴Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
当x=1,Sn(1)=1+4+7+…+(3n-2)
=
当x≠1,0时,Sn(x)=x+4x2+7x3+…+(3n-5)xn-1+(3n-2)xn
xSn(x)=x2+4x3+7x4+…+(3n-5)xn+(3n-2)xn+1
(1-x)Sn(x)=x+(3x2+3x3+…+3xn)-(3n-2)xn+1
=x+
-(3n-2)xn+1
∴Sn(x)=![]()
=![]()
=![]()
=![]()
当x=0时,Sn(0)=0也适合.
综上所述,x=1,Sn(1)=![]()
x≠1,Sn(x)=
.
科目:高中数学 来源: 题型:
|
| 1 |
| π |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中数学 来源: 题型:
| x-1 | x+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com