精英家教网 > 高中数学 > 题目详情
已知sinx+2cosy=2,求cosx+2siny的范围.
考点:三角函数中的恒等变换应用
专题:三角函数的求值,三角函数的图像与性质
分析:直接对关系式进行恒等变换,进一步利用换元法设cosx+2siny=t,然后结合函数的值域进一步求出结果.
解答: 解:(sinx+2cosy)2+(cosx+2siny)2=1+4sinxcosy+4cosxsiny+4
=5+4(sin(x+y)
因为:sinx+2cosy=2,
设cosx+2siny=t
则:t2=1+4sin(x+y)
所以:0≤t2≤5
解得:-
5
≤t≤
5
点评:本题考查的知识要点:三角函数关系式的恒等变换,换元法的应用.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等比数列{an}的前n项和为Sn,且S3=2,S6=6,则a13+a14+a15的值是(  )
A、18B、28C、32D、144

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
1
1-i
的共轭复数为(  )
A、
1
2
+
1
2
i
B、-
1
2
-
1
2
i
C、
1
2
-
1
2
i
D、-
1
2
+
1
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-b,g(x)=ex(a,b∈R),h(x)为g(x)的反函数.
(Ⅰ)若函数y=f(x)-g(x)在x=1处的切线方程为y=(1-e)x-2,求a,b的值;
(Ⅱ)当b=0时,若不等式f(x)>h(x)恒成立,求a的取值范围;
(Ⅲ)当a=b时,若对任意x0∈(-∞,0],方程f(x)-h(x)=g(x0)在(0,e]上总有两个不等的实根,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,线段BB1与线段AD1所成角的余弦值为(  )
A、
2
3
B、
3
2
C、
1
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:分子为1且分母为正整数的分数称为单位分数.我们可以把1分拆为若干个不同的单位分数之和. 如:1=
1
2
+
1
3
+
1
6
,1=
1
2
+
1
4
+
1
6
+
1
12
,1=
1
2
+
1
5
+
1
6
+
1
12
+
1
20
,…依此类推可得:1=
1
2
+
1
6
+
1
12
+
1
m
+
1
n
+
1
30
+
1
42
+
1
56
+
1
72
+
1
90
+
1
110
+
1
132
+
1
156
,其中m≤n,m,n∈N*.设1≤x≤m,1≤y≤n,则
x+y+2
x+1
的最小值为(  )
A、
23
2
B、
5
2
C、
8
7
D、
34
3

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是两个不共线的向量
(1)已知
AB
=2
e1
+k
e2
CB
=
e1
+3
e2
CD
=2
e1
-
e2
,若A,B,D三点共线,求k的值
(2)如图,在平行四边形OPQR中,S是对角线的交点,若
OP
=2
e1
OR
=3
e2
,以
e1
e2
为基底表示
PS
QS

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,定义:A(x)表示不大于x的最大整数,如A(
3
)=1,A(-0.4)=-1,A(-1.1)=-2,
(1)试写出A(x)的解析式;
(2)A(2x+1)=3,则实数x的取值范围是
 

(3)求满足条件A2(x)+A2(y)≤1的点(x,y)所构成的平面区域的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos2θ=sinθ.直线l过点(-1,2)且倾斜角为
4

(Ⅰ)在直角坐标系下,求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案