(本小题满分12分)
在平面直角坐标系
中,点
到两定点F1
和F2
的距离之和为
,设点
的轨迹是曲线
.(1)求曲线
的方程; (2)若直线
与曲线
相交于不同两点
、
(
、
不是曲线
和坐标轴的交点),以
为直径的圆过点
,试判断直线
是否经过一定点,若是,求出定点坐标;若不是,说明理由.
(1)
;(2)直线
过定点,定点坐标为
.
【解析】
试题分析:(1)设
,由椭圆定义可知,
点
的轨迹
是以
和
为焦点,长半轴长为2的椭圆.
它的短半轴长
,故曲线
的方程为:
(2)设
.
联立
消去y,整理得
,
则 ![]()
又
.
因为以
为直径的圆过点
,
,即
.
.
![]()
.
.
解得:
,且均满足
.
当
时,
的方程
,直线过点
,与已知矛盾;
当
时,
的方程为
,直线过定点
.
所以,直线
过定点,定点坐标为
.
考点:本题主要考查椭圆的定义及标准方程,直线与椭圆的位置关系。
点评:典型题,关于椭圆的考查,往往以这种“连环题”的形式出现,首先求标准方程,往往不难。而涉及在直线与椭圆的位置关系,往往要利用韦达定理,实现“整体代换”。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com