精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥S-ABCD的底面ABCD是边长为1的正方形,SA⊥平面ABCD,SA=2,E是侧棱SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)求四棱锥S-ABCD的体积.
分析:(1)由SA⊥平面ABCD,BD?平面ABCD,知SA⊥BD,由底面ABCD为正方形,知BD⊥AC,由此能够证明面EBD⊥面SAC.
(2)由底面ABCD为边长为1的正方形,SA⊥平面ABCD,SA=2,能求出四棱锥S-ABCD的体积.
解答:解:(1)∵SA⊥平面ABCD,BD?平面ABCD,
∴SA⊥BD,
∵底面ABCD为正方形,
∴BD⊥AC,
∵SA∩AC=A,
∴BD⊥平面SAC,
∵BD?平面EBD,
∴面EBD⊥面SAC.
(2)∵底面ABCD为边长为1的正方形,
SA⊥平面ABCD,SA=2,
∴VS-ABCD=
1
3
×1×1×2
=
2
3
点评:本题考查平面与平面垂直的证明,考查四棱锥的体积的求法,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面是边长为4的正方形,S在底面上的射影O落在正方形ABCD内,SO的长为3,O到AB,AD的距离分别为2和1,P是SC的中点.
(Ⅰ)求证:平面SOB⊥底面ABCD;
(Ⅱ)设Q是棱SA上的一点,若
AQ
=
3
4
AS
,求平面BPQ与底面ABCD所成的锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,已知四棱锥S-ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD的中点,Q为SB的中点.
(Ⅰ)求证:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)(如图)已知四棱锥S-ABCD的底面ABCD是菱形,将面SAB,SAD,ABCD 展开成平面后的图形恰好为一正三角形S'SC.
(1)求证:在四棱锥S-ABCD中AB⊥SD.
(2)若AC长等于6,求异面直线AB与SC之间的距离.

查看答案和解析>>

同步练习册答案