精英家教网 > 高中数学 > 题目详情
某厂家生产一种精密仪器,已知该工厂每日生产的产品最多不超过30件,且在生产过程中产品的正品率P与每日生产的产品件数x(x∈N*)之间的关系为p(x)=
m-x2
3 000
,每生产一件正品盈利2 000元,每生产一件次品亏损1 000元.已知若每日生产10件,则生产的正品只有7件.(注:正品率=产品的正品件数÷产品总件数×100%)
(1)求日利润y(元)与日产量x(件)之间的函数关系式;
(2)求该工厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
考点:函数模型的选择与应用,函数的最值及其几何意义
专题:函数的性质及应用
分析:(1)利用每日生产10件,则生产的正品只有7件,确定m的值,利用每生产一件正品盈利2 000元,每生产一件次品亏损1 000元,可得日利润y(元)与日产量x(件)之间的函数关系式;
(2)求导数,确定函数的单调性,从而可求极值,即可得到结论.
解答: 解:(1)∵在生产过程中产品的正品率P与每日生产的产品件数x(x∈N*)之间的关系为p(x)=
m-x2
3 000

每日生产10件,则生产的正品只有7件
7
10
=
m-100
3 000
,∴m=2200,∴p(x)=
2200-x2
3 000

∴y=2000•
2200-x2
3 000
•x-1000•(1-
2200-x2
3 000
)•x=1200x-x3
(2)y′=1200-3x2=0,∴x=20
∴函数在(0,20)上单调递增,在(20,10
22
)上单调递减
∴x=20时,函数取得极大值,即为最大值,最大值为16000元.
点评:本题考查函数模型的建立,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了考察甲、乙两种小麦的长势,分别从中抽取了10株苗,测得苗高如下(单位:cm):
甲:12,13,14,15,10,16,13,11,5,11;
乙:8,16,15,14,13,11,10,11,10,12;
则下列说法正确的是(  )
A、甲的平均苗高比乙
B、乙的平均苗高比甲高
C、平均苗高一样,甲长势整齐
D、平均苗高一样,乙长势整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对边分别为a,b,c,若A,B,C的度数成等差数列且b=
3
,则a+c的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投人生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.
(1)用d表示a1,a2,并写出an+1与an的关系式;
(2)若公司希望经过m(m≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d的值(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1,a2+b2,a3+b3成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,{an}的前n项和为Sn,a1+a3=
3
2
,S5=5.
(1)求数列{an}的通项公式;
(2)数列{bn}满足anbn=
1
4
,Tn=b1b2+b2b3+b3b4+…+bnbn+1,若不等式2kTn<bn恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,1),
b
=(cosx,
1
2
),f(x)=
a
•(
a
-k
b

(1)求函数f(x)的值域;
(2)若函数f(x)的最大值为
5-
3
2
,则函数f(x)的图象能否由函数g(x)=2
a
b
的图象经过平移得到?若能,则写出一个平移向量
m
;若不能,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设ABCD是平行四边形,如图所示,O是对角线AC与BD的交点,且
AB
=
a
AD
=
b
,则
(1)
AC
=
 
OD
=
 

(2)当|
a
+
b
|=|
a
-
b
|时,
a
b
的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某影视城为提高旅游增加值,现需要对影视城内景点进行改造升级.经过市场调查,改造后旅游收入y(万元)与投入x(万元)之间满足关系:y=
51
50
x
-ax2,x∈[t,+∞),其中t为大于
1
2
的常数.当x=10万元时,y=9.2万元,又每投入x万元需缴纳(3+ln
x
10
)万元的增值税(旅游增加值=旅游收入-增值税).
(I)若旅游增加值为了f(x),求f(x)的解析式;
(Ⅱ)求旅游增加值f(x)的最大值M.

查看答案和解析>>

同步练习册答案