精英家教网 > 高中数学 > 题目详情

已知集合M={m,-3},N={x|2x2+7x+3<0,x∈Z},如果M∩N≠∅,则m等于


  1. A.
    -1
  2. B.
    -2
  3. C.
    -2或-1
  4. D.
    数学公式
C
分析:求出集合N中不等式的解集,找出解集中的整数解,得到x的值,确定出集合N,由两集合的交集不为空集,即两集合有公共元素,即可求出m的值.
解答:由集合N中的不等式2x2+7x+3<0,
因式分解得:(2x+1)(x+3)<0,
解得:-3<x<-
又x∈Z,
∴x=-2,-1,
∴N={-2,-1},
∵M∩N≠∅,
∴m=-1或m=-2.
故选C
点评:此题属于以不等式的整数解为平台,考查了交集及其运算,是高考中常考的基本题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M,N为全集U的子集,则图中的阴影部分所表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={a,b,-(a+b)},a∈R,b∈R,,集合P={1,0,-1},映射f:x→x表示把集合M中的元素x映射到集合P中仍为x,则以a,b为坐标的点组成的集合S有元素(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M为点集,记性质P为“对任意(x,y)∈M,k∈(0,1),均有(kx,ky)∈M”.给出下列集合:①{(x,y)|x2≥y},
②{(x,y)|2x2+y2<1},
③{(x,y)|x2+y2+2x+2y=0},
④{(x,y)|x3+y3-x2y=0},
其中具备有性质P的点集的有
②④
②④
.(请写出所有符合的选项)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

同步练习册答案