精英家教网 > 高中数学 > 题目详情
9.(1)若x,y满足|x-3y|<$\frac{1}{2}$,|x+2y|<$\frac{1}{6}$,求证:|x|<$\frac{3}{10}$;
(2)求证:x4+16y4≥2x3y+8xy3

分析 (1)利用绝对值不等式的性质即可证明;
(2)作差比较即可.

解答 证明:(1)利用绝对值不等式的性质得:
|x|=$\frac{1}{5}$[|2(x-3y)+3(x+2y)|]≤$\frac{1}{5}$[|2(x-3y)|+|3(x+2y)|]<$\frac{1}{5}$(2×$\frac{1}{2}$+3×$\frac{1}{6}$)=$\frac{3}{10}$;
(2)因为x4+16y4-(2x3y+8xy3)=x4-2x3y+16y4-8xy3=x3(x-2y)+8y3(2y-x)
=(x-2y)(x3-8y3)=(x-2y)(x-2y)(x2+2xy+4y2
=(x-2y)2[(x+y)2+3y2]≥0,
所以x4+16y4≥2x3y+8xy3

点评 本题考查了绝对值不等式的性质,作差法证明不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知随机变量η满足E(1-η)=5,D(1-η)=5,则下列说法正确的是(  )
A.E(η)=-5,D(η)=5B.E(η)=-4,D(η)=-4C.E(η)=-5,D(η)=-5D.E(η)=-4,D(η)=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,一条直线l与椭圆交于M、N两点,直线OM、ON的斜率之积为-$\frac{1}{4}$,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}(a-2)x,x≥1\\{(\frac{1}{2})^x}-1,x<1\end{array}$是R上的单调递减函数,则实数a的取值范围是a≤$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了引导居民合理用水,某市决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别第一阶梯水量 第二阶梯水量 第三阶梯水量 
 月用水量范围(单位:立方米)(0,10](10,15] (15,+∞)
从本市随机抽取了10户家庭,统计了同一个月的用水量,得到如图所示的茎叶图.
(1)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列和均值;
(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到n户月用水量为第二阶梯水量的可能性最大,求出n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,两条渐近线分别为l1,l2,过F1作F1A⊥l1于点A,过F2作F2B⊥l2于点B,O为原点,若△ABO是边长为$\sqrt{3}$的等边三角形,则双曲线的方程为(  )
A.$\frac{x^2}{21}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{21}=1$C.$\frac{x^2}{3}-\frac{y^2}{9}=1$D.$\frac{x^2}{9}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-3x2-m,g(x)=3ex-6(1-m)x-3(m∈R,e为自然对数底数).
(1)试讨论函数f(x)的零点的个数;
(2)证明:当m>0,且x>0时,总有g(x)>f'(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列关系中,是相关关系的有多少个(  )
①利息与利率                                ②学生的身高与学生的学习成绩之间的关系
③居民收入与储蓄存款                  ④学生的学习态度与学习成绩之间的关系.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为(  )
A.180B.200C.128D.162

查看答案和解析>>

同步练习册答案