精英家教网 > 高中数学 > 题目详情
20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,一条直线l与椭圆交于M、N两点,直线OM、ON的斜率之积为-$\frac{1}{4}$,求△MON的面积.

分析 (Ⅰ)求得抛物线的准线方程,由椭圆的焦点在x轴上,则b=1,利用椭圆的离心率公式,即可求得a的值,即可求出椭圆C的方程;
(Ⅱ)设直线MN的方程为y=kx+m,(m≠0),代入椭圆方程,由此利用韦达定理、弦长公式、点到直线距离公式,结合已知条件能求出△MON的面积.

解答 解:(Ⅰ)∵椭圆的焦点在x轴上,
抛物线x2=4y的准线,y=-1,由椭圆的顶点在抛物线的准线上,则b=1,
椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,则a=2,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(Ⅱ)当直线MN的斜率存在时,设其方程为y=kx+m,(m≠0),设M(x1,y1),N(x2,y2),
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y,得:(4k2+1)x2+8kmx+4m2-4=0,
则x1+x2=-$\frac{8km}{2{k}^{2}+1}$,x1x2=$\frac{4{m}^{2}-4}{4{k}^{2}+1}$,
∴|MN|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{(1+{k}^{2})(4{k}^{2}+1-{m}^{2})}}{4{k}^{2}+1}$,
点O到直线y=kx+m的距离d=$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$,
S△MON=$\frac{1}{2}$×丨MN丨×d=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$,
∵k1k2=-$\frac{1}{4}$,
∴k1k2=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}}{{x}_{1}{x}_{2}}$=$\frac{{m}^{2}-4{k}^{2}}{4{m}^{2}-4}$=-$\frac{1}{4}$,
∴4k2=2m2-1,
∴S△MON=2$\sqrt{\frac{{m}^{2}}{4{k}^{2}+1}(1-\frac{{m}^{2}}{4{k}^{2}+1})}$=2$\sqrt{\frac{1}{2}×(1-\frac{1}{2})}$=1.
∴△MON的面积1.

点评 本题考查椭圆方程、三角形面积的求法,考查韦达定理、弦长公式、点到直线距离公式、直线方程、椭圆性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,上顶点为A,若直线AF与圆O:x2+y2=$\frac{{3{a^2}}}{16}$相离,则该椭圆离心率的取值范围是(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$C.$(\frac{1}{2},1)$D.$(\frac{{\sqrt{3}}}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-4lnx}{{x}^{2}}$.
(1)求函数f(x)的单调区间;
(2)若对任意的x1,x2∈[$\frac{1}{e}$,+∞),且x1≠x2,不等式$\frac{f({x}_{1})-f({x}_{2})}{{{x}_{2}}^{2}-{{x}_{1}}^{2}}$≤$\frac{k}{{{x}_{1}}^{2}•{{x}_{2}}^{2}}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={x|x2-1≤0},N=|x∈Z|$\frac{1}{2}$<2x+1<4},则M∩N=(  )
A.{1}B.{-1,0}C.{-1,0,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,已知点G是△ABC的重心,过点G作直线与AB、AC两边分别交于M、N两点,且$\overrightarrow{AM}$=$\frac{a}{3}$$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{b}{6}$$\overrightarrow{AC}$,则$\frac{2}{a-1}$+$\frac{1}{b-2}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4|$\overrightarrow{b}$|=2,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z=m(m-1)+(m2+2m-3)i;当实数m取什么值时,复数z是:
(1)实数
(2)虚数
(3)纯虚数
(4)零.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)若x,y满足|x-3y|<$\frac{1}{2}$,|x+2y|<$\frac{1}{6}$,求证:|x|<$\frac{3}{10}$;
(2)求证:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\underset{lim}{△x→0}$$\frac{f{(x}_{0}+△x)-f{(x}_{0}-△x)}{△x}$=(  )
A.$\frac{1}{2}$f′(x0B.f′(x0C.2f′(x0D.-f′(x0

查看答案和解析>>

同步练习册答案