精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,,E是SA的中点.

(1)求证:平面BED平面SAB;

(2)求直线SA与平面BED所成角的大小.

 

【答案】

(1)见解析;(2)45°

【解析】本题考查面面垂直,考查线面角,解题的关键是掌握面面垂直的判定,正确得出线面角,属于中档题.

(1)证明平面BED⊥平面SAB,利用面面垂直的判定定理,证明DE⊥平面SAB即可;

(2)作AF⊥BE,垂足为F,可得∠AEF是直线SA与平面BED所成的角,在Rt△AFE中,即可求得结论.

解:(1)∵SD⊥平面ABCD,∴平面SAD⊥平面ABCD,

∵AB⊥AD,∴AB⊥平面SAD,∴DE⊥AB. …………………………………………3分

∵SD=AD,E是SA的中点,∴DE⊥SA,

∵AB∩SA=A,∴DE⊥平面SAB

∴平面BED⊥平面SAB.(若用向量法请参照给分)……………………………………6分

(2)法一:作AF⊥BE,垂足为F.

由(Ⅰ),平面BED⊥平面SAB,则AF⊥平面BED,

则∠AEF是直线SA与平面BED所成的角.……………………………………………8分

设AD=2A,则AB=A,SA=2 A,AE=A,

△ABE是等腰直角三角形,则AF=A.

在Rt△AFE中,sin∠AEF=

故直线SA与平面BED所成角的大小45°.…………………………………………12分

(2)法二:分别以DA,DC,DS为坐标轴建立坐标系D—xyz,不妨设AD=2,则

D(0,0,0),A(2,0,0),B(2,,0),

C(0,,0),S(0,0,2),E(1,0,1).

=(2,,0),=(1,0,1),=(2,0,0),=(0,-,2).

设m=(x1,y1,z1)是面BED的一个法向量,则

,因此可取m=(-1,,1).…………………8分

  ……12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案