精英家教网 > 高中数学 > 题目详情
4.设y=f(x)(x∈R)是定义在R上的以4为周期的奇函数,且f(1)=-1,则f(11)的值是(  )
A.-1B.1C.2D.-2

分析 根据已知中函数的周期性和奇偶性,结合f(1)=-1,可得f(11)的值.

解答 解:∵y=f(x)(x∈R)是定义在R上的以4为周期的奇函数,
且f(1)=-1,
∴f(11)=f(7)=f(3)=f(-1)=-f(1)=1,
故选:B.

点评 本题考查的知识点是函数的周期性,函数的奇偶性,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知f(x)=ax,g(x)=ex,若?x0∈[0,2],f(x0)>g(x0),则实数a的取值范围是(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$a=\int_1^{e^2}{\frac{1}{x}dx}$,则二项式$({x+\frac{1}{x}}){({ax-\frac{1}{x}})^5}$的展开式中常数项为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,
(1)求点A到平面EFD的距离
(2)设BD中点为M,空间中的点Q,G满足$\overrightarrow{CQ}=2\overrightarrow{AM}=\overrightarrow{AG}$,
点P是线段CQ上的动点,若二面角P-AB-D的大小为α,二面角P-BG-D的大小为β,求cos(α+β)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,已知a3=5,a2+a5=12,an=4a4+1,则n=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)若$sinα=-\frac{5}{13}$,求tanα的值.
(2)已知tanx=2,求$\frac{4sinx-2cosx}{3sinx+5cosx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知定点A(7,8)和抛物线y2=4x,动点B和P分别在y轴上和抛物线上,若$\overrightarrow{OB}•\overrightarrow{PB}=0$(其中O为坐标原点),则$|{\overrightarrow{PA}}|+|{\overrightarrow{PB}}|$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列结论正确的是(  )
A.当x>0且x≠1时,lnx+$\frac{1}{lnx}$≥2B.当x>0时,$\sqrt{x}$+$\frac{1}{\sqrt{x}}$≥2
C.当x≥2时,x+$\frac{1}{x}$的最小值为2D.当0<x≤π时,sinx+$\frac{4}{sinx}$最小值为4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足an=logn+1(n+2)(n∈N*),定义:使乘积a1,a2,a3,…ak为正整数的k叫做“期盼数”,则在区间[1,2015]内所有的“期盼数”的和为(  )
A.2036B.4072C.4076D.2026

查看答案和解析>>

同步练习册答案