精英家教网 > 高中数学 > 题目详情
边长为a的正三角形内任一点到三边距离之和为定值
3
2
a
,类比到空间,棱长均为a的三棱锥内任一点到各面距离之和为(  )
A.
3
a
3
B.
6
a
2
C.
6
a
3
D.
2
a
2
本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,
如图:
由棱长为a可以得到BF=
3
2
,BO=AO=
6
3
-OE

在直角三角形中,根据勾股定理可以得到
BO2=BE2+OE2
把数据代入得到OE=
6
12

∴棱长为a的三棱锥内任一点到各个面的距离之和4×
6
12
=
6
3

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

我们知道,在边长为2a的正三角形内任一点到三边的距离之和为定值
3
a
,类比上述结论,在边长为3a的正四面体内任一点到其四个面的距离之和为定值______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面上有n个圆,其中每两个圆之间都相交于两个点,每三个圆都无公共点,它们将平面分成f(n)块区域,则f(n)的表达式是(  )
A.2nB.2n-(n-1)(n-2)(n-3)
C.n3-5n2+10n-4D.n2-n+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

可作为四面体的类比对象的是(  )
A.四边形B.三角形C.棱锥D.棱柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

由平面几何知识,我们知道在Rt△ABC中,若两条直线边的长分别为a,b,则△ABC的外接圆半径R=
a2+b2
2
,如果我们将这一结论拓展到空间中去,类比可得:在三棱锥中,若三条侧棱两两垂直,且它们的长分别为a,b,c,则条棱锥的外接球半径R=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

“∵AC,BD是菱形ABCD的对角线,∴AC,BD互相垂直且平分.”此推理过程依据的大前提是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题:“若,那么中至少有一个不小于”时,反设正确的是(     )
A.假设至多有两个小于
B.假设至多有一个小于
C.假设都不小于
D.假设都小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

时,比较的大小并猜想(  )
A.时,B.时,
C.时,D.时,

查看答案和解析>>

同步练习册答案