分析 (1)设奖励函数模型为y=f(x),根据“奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,说明在定义域上是增函数,且奖金不超过9万元,即f(x)≤9,同时奖金不超过投资收益的20%.即f(x)≤$\frac{x}{5}$.
(2)先将函数解析式进行化简,然后根据函数的单调性,以及使g(x)≤9对x∈[10,1000]恒成立以及使g(x)≤$\frac{x}{5}$对x∈[10,1000]恒成立,建立不等式,求出相应的a的取值范围.
解答 解:(1)对于函数模型y=f(x)=$\frac{x}{150}$+1,
当x∈[10,1 000]时,f(x)为增函数,--------------------------(1分)
f(x)max=f(1 000)=$\frac{1000}{150}$+1=$\frac{20}{3}$+1<9,所以f(x)≤9恒成立,---(2分)
又因为当x∈[10,1 000]时f(x)-$\frac{x}{5}$=-$\frac{29x}{150}$+1≤f(10)=-$\frac{14}{15}$<0,
所以f(x)≤$\frac{x}{5}$恒成立,----------------------------------------(3分)
故函数模型y=$\frac{x}{150}$+1符合公司要求.---------------------------(4分)
(2)对于函数模型y=g(x)=$\frac{10x-3a}{x+2}$,即g(x)=10-$\frac{3a+20}{x+2}$,
当3a+20>0,即a>-$\frac{20}{3}$时递增,-------------------------------(5分)
为使g(x)≤9对于x∈[10,1 000]恒成立,
即要g(1 000)≤9,3a+18≥1 000,即a≥$\frac{982}{3}$,------------------(7分)
为使g(x)≤$\frac{x}{5}$对于x∈[10,1 000]恒成立,
即要$\frac{10x-3a}{x+2}$≤5,即x2-48x+15a≥0恒成立,
即(x-24)2+15a-576≥0(x∈[10,1 000])恒成立,又24∈[10,1 000],
故只需15a-576≥0即可,
所以a≥$\frac{192}{5}$.-------------------------------------------------(9分)
综上,a≥$\frac{982}{3}$,故最小的正整数a的值为328.--------------------(10分)
点评 本题主要考查了函数模型的选择与应用,以及函数的最值得应用,同时考查了函数的单调性和恒成立问题,以及转化的思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | [-$\frac{1}{2}$,+∞) | C. | (-∞,0] | D. | (-∞,-$\frac{1}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com