精英家教网 > 高中数学 > 题目详情
4.设动直线x=a与函数f(x)=2sin2x和$g(x)=\sqrt{3}sin2x$的图象分别交于M、N两点,则|MN|的最大值为3.

分析 用二倍角公式化简f(x),将|MN|表示成a的三角函数,
再化为正弦型函数,利用三角函数的有界性求出最大值.

解答 解:函数f(x)=2sin2x=1-cos2x,
函数$g(x)=\sqrt{3}sin2x$;
∴f(x)-g(x)=1-cos2x-$\sqrt{3}$sin2x
=-2($\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x)+1
=-2sin(2x+$\frac{π}{6}$)+1;
若直线x=a与函数f(x)和g(x)的图象分别交于M、N两点,
则|MN|=|f(a)-g(a)|=|-2sin(2a+$\frac{π}{6}$)+1|≤|2+1|=3,
∴|MN|的最大值为3.
故答案为:3.

点评 本题考查了三角函数的二倍角公式、诱导公式以及三角恒等变换和正弦函数的有界性问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,已知PA=AB,∠ABC为直角,PA⊥BC.点D,E分别为PB,BC的中点.
(1)求证:AD⊥平面PBC;
(2)若F在线段AC上,当$\frac{AF}{FC}$为何值时,AD∥平面PEF?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=3sin({\frac{x}{2}+\frac{π}{6}})+3$
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出f(x)的周期和单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;      
(2)求数列$\{\frac{1}{a_n}-n\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D$({1,\frac{3}{2}})$在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1
(1)求椭圆C的方程;
(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:存在向量$\overrightarrow{a}$,$\overrightarrow{b}$,使得$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|,命题q:对任意的向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$.则下列判断正确的是(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列4个命题中正确命题的个数是
(1)对于命题p:?x0∈R,使得x02-1≤0,则¬p:?x∈R都有x2-1>0
(2)已知X~N(2,σ2),P(x>2)=0.5
(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为$\stackrel{∧}{y}$=2x-3
(4)“x≥1”是“x+$\frac{1}{x}$≥2”的充分不必要条件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于4的点数出现”,则一次试验中,事件A+$\overline{B}$发生的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少;
(Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:60,65,70,75,80,85,90,95;
物理成绩由低到高依次为:72,77,80,84,88,90,93,95,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案