精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},-1≤x≤0}\\{x+{x}^{2},0<x≤1}\end{array}\right.$,若f(1-a)≤f(a),求实数a的取值范围.

分析 作出函数的图象,根据图象判断函数的单调性,进行求解即可.

解答 解:作出函数的图象如图:则函数f(x)在[-1,1]上为增函数,
若f(1-a)≤f(a),
则$\left\{\begin{array}{l}{-1≤1-a≤1}\\{-1≤a≤1}\\{1-a≤a}\end{array}\right.$,
即$\left\{\begin{array}{l}{0≤a≤2}\\{-1≤a≤1}\\{a≥\frac{1}{2}}\end{array}\right.$,
解得$\frac{1}{2}$≤a≤1,
即实数a的取值范围是[$\frac{1}{2}$,1].

点评 本题主要考查函数单调性的应用,根据分段函数的表达式得到函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax+b,且f(3)=7,f(5)=-1,求f(0),f(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设数列{an}的通项公式为an=2n-1,则数列{$\frac{{a}_{n}}{{2}^{n}}$}的前n项和Sn等于3-$\frac{2n+3}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=ax-x2(a>0且a≠1)有两个正数零点,则实数a的取值范围为(1,${e}^{\frac{2}{e}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=log2(|x|+1)的图象大致是②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求满足下列条件的f(x):
(1)f(x-$\frac{1}{x}$)=$\frac{{x}^{2}}{1{+x}^{4}}$;
(2)2f(x)+f(1-x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2+$\frac{cosx}{{x}^{2}}$,则y=f(x)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果映射f:A→B的象的集合是Y,原象集合是X.那么X和A的关系是X=AY和B的关系是Y⊆B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}中,a2=p(p为常数,且p≠0),Sn为某前n项和,若Sn=$\frac{1}{2}$n(an-a1)对一切n∈N*都成立.
(1)证明:数列已知数列{an}为等差数列;
(2)记bn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案