精英家教网 > 高中数学 > 题目详情
19.设数列{an}的通项公式为an=2n-1,则数列{$\frac{{a}_{n}}{{2}^{n}}$}的前n项和Sn等于3-$\frac{2n+3}{{2}^{n}}$.

分析 通过数列{an}的通项公式为an=2n-1可知$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,利用Sn=1•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+(2n-1)•$\frac{1}{{2}^{n}}$与$\frac{1}{2}$Sn=1•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+(2n-3)•$\frac{1}{{2}^{n}}$+(2n-1)•$\frac{1}{{2}^{n+1}}$错位相减、计算即得结论.

解答 解:∵数列{an}的通项公式为an=2n-1,
∴$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
∴Sn=1•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+(2n-1)•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}$Sn=1•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+(2n-3)•$\frac{1}{{2}^{n}}$+(2n-1)•$\frac{1}{{2}^{n+1}}$,
错位相减得:$\frac{1}{2}$Sn=$\frac{1}{2}$+2($\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$)-(2n-1)•$\frac{1}{{2}^{n+1}}$
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-(2n-1)•$\frac{1}{{2}^{n+1}}$
=$\frac{1}{2}$+1-$\frac{1}{{2}^{n-1}}$-(2n-1)•$\frac{1}{{2}^{n+1}}$
=$\frac{3}{2}$-(2n+3)•$\frac{1}{{2}^{n+1}}$,
∴Sn=3-$\frac{2n+3}{{2}^{n}}$,
故答案为:3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查数列的求和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,a1=3,且对任意大于1的正整数n,点( $\sqrt{{a}_{n}}$,$\sqrt{{a}_{n-1}}$ )在直线x-y-$\sqrt{3}$=0上,
(1)求an
(2)设Tn为数列{$\frac{1}{\sqrt{{a}_{n}}\sqrt{{a}_{n+1}}}$}的前n项和,若3Tn<λ对n∈N*恒成立,求整数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式$\frac{2{x}^{2}+3x+1}{3{x}^{2}-7x+2}$>0的解集是(-∞,-1)∪($-\frac{1}{2}$,$\frac{1}{3}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.下列对应关系中,哪些是从集合A到集合B的映射?
(1)A=R,B={0,1},对应关系f:x→y=$\left\{\begin{array}{l}{1,}&{x≥0}\\{0,}&{x<0}\end{array}\right.$;
(2)设A={矩形},B={实数},对应关系f:矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤2}\\{f(x-1),x>2}\end{array}\right.$,那么f(4)的值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.画出方程ρ(2cosθ-5sinθ)=3的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a、b、c,已知A=$\frac{π}{4}$,cosB-cos2B=0.
(1)求C的大小;
(2)若a2+c2=b-ac+2,求c及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{x-{x}^{2},-1≤x≤0}\\{x+{x}^{2},0<x≤1}\end{array}\right.$,若f(1-a)≤f(a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$lo{g}_{\frac{1}{2}}$(x2-ax+2)
(1)写出当a=3时,f(x)的单调区间;
(2)若函数f(x)在(2,+∞)上单凋递减,求a的取值范围.

查看答案和解析>>

同步练习册答案