(本题满分12分)
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,.点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求二面角的平面角的正切值.
(2)解法一:
过作于,则E为BC的中点,过E做EF^B1C于F,连接DF,
是中点,∴ ,又平面
∴平面,
又平面,平面
∴ ,
∴平面,平面∴
∴是二面角的平面角 ………9分
AC=3,BC=4,AA1=4,
∴在中,,,
∴ [来源:Zxxk.Com]
∴二面角的正切值为 ………12分
解法二:以分别为轴建立如图所示空间直角坐标系………6分
AC=3,BC=4,AA1=4,
∴, ,,,
∴,
平面的法向量, …………………8分
设平面的法向量,
则,的夹角(或其补角)的大小就是二面角的大小
则由 令,则,
∴ ……………10分
,则 ………11分
∵二面角是锐二面角
∴二面角的正切值为 …………… 12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com