精英家教网 > 高中数学 > 题目详情

设函数f(x)=xex,g(x)=ax2+x
(I)若f(x)与g(x)具有完全相同的单调区间,求a的值;
(Ⅱ)若当x≥0时恒有f(x)≥g(x),求a的取值范围.

解:(I)∵f(x)=xex,∴f′(x)=ex+xex=(1+x)ex,…(2分)
当x<-1时,f′(x)<0,∴f(x)在(-∞,-1)内单调递减;
当x>-1时,f′(x)>0,∴f(x)在(-1,+∞)内单调递增…(4分)
又g′(x)=2ax+1,由g′(-1)=-2a+1=0,得a=
此时g(x)=x2+x=
显然g(x)在(-∞,-1)内单调递减,在(-1,+∞)内单调递增,故a=.…(6分)
(II)当x≥0时恒有f(x)≥g(x),即f(x)-g(x)=x(ex-ax-1)≥0恒成立.…(7分)
故只需F(x)=ex-ax-1≥0恒成立,
对F(x)求导数可得F′(x)=ex-a.…(8分)
∵x≥0,∴F′(x)=ex-a,
若a≤1,则当x∈(0,+∞)时,F′(x)>0,F(x)为增函数,
从而当x≥0时,F(x)≥F(0)=0,即f(x)≥g(x);…(10分)
若a>1,则当x∈(0,lna)时,F′(x)<0,F(x)为减函数,
从而当x∈(0,lna)时,F(x)<F(0)=0,即f(x)<g(x),故f(x)≥g(x)不恒成立.
故a的取值范围为:a≤1----(12分)
分析:(I)求f(x)的导数,可得单调区间,由极值点可得a值,可验证符合题意;
(Ⅱ)可转化为f(x)-g(x)=x(ex-ax-1)≥0恒成立,令F(x)=ex-ax-1,可得导数F′(x)=ex-a,对a进行分类讨论可得结论.
点评:本题考查函数和导数的综合应用,涉及恒成立问题和分类讨论的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对?x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe-x+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式
(2)设a>0,讨论函数y=f(x)的单调性;
(3)若对任意x∈(0,1),恒有f(x)>1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:2012年四川省德阳市高考数学三模试卷(理科)(解析版) 题型:解答题

已知函数f(x)=[x2-(a+2)x-2a2+a+2]ex
(1)求函数f(x)的单调增区间;
(2)设a>0,x=2是f(x)的极值点,函数h(x)=xe-xf(x).若过点A(0,m)(m≠0)可作曲线y=h(x)的三条切线,求实数m的取值范围;
(3)设a>1,函数g(x)=(a2+4)ex,若存在x1∈[0,1]、x2∈[0,1],使|f(x1)-f(x2)|<12,求实数a的取值范围.

查看答案和解析>>

同步练习册答案