| A. | (0,2$\sqrt{2}$) | B. | (0,4$\sqrt{2}$) | C. | (0,4) | D. | (2$\sqrt{2}$,4$\sqrt{2}$) |
分析 求得圆的圆心和半径,运用等腰三角形的三线合一和中位线定理,可得M为中点,|MN|=$\frac{1}{2}$|PF1|,由圆的性质可得|MN|的范围.
解答
解:圆(x-1)2+y2=8的圆心为(1,0),半径为2$\sqrt{2}$,
令y=0,可得x=1±2$\sqrt{2}$,
$\overrightarrow{{F}_{1}M}$$•\overrightarrow{MP}$=0,可得MP⊥F1M,又MP为∠F1PF2的角平分线,
即有|PF1|=|PQ|,M为F1Q的中点,
又N为PQ的中点,可得|MN|=$\frac{1}{2}$|PF1|,
显然|PF1|∈(0,4$\sqrt{2}$),即有|MN|∈(0,2$\sqrt{2}$).
故选:A.
点评 本题考查圆的方程和运用,考查平面几何的三线合一和中位线定理的运用,注意数形结合的思想方法,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $4\sqrt{3}π$ | B. | $\frac{{28\sqrt{7}π}}{3}$ | C. | $8\sqrt{6}π$ | D. | $\frac{{32\sqrt{7}π}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>1} | B. | {x|-1<x<3} | C. | {x|1<x<3} | D. | {x|-1<x<1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com