精英家教网 > 高中数学 > 题目详情

已知fAB)=sin22A+cos22Bsin2A-cos2B+2.

(1)设△ABC的三内角为ABC,求fAB)取得最小值时,C的值;

(2)当A+B=AB∈R时,y=fAB)的图象按向量p平移后得到函数y=2cos2A的图象,求满足上述条件的一个向量p.


解析:

(1)fAB)=(sin2A2+(cos2B2+1,

由题意,∴C=C=.

(2)∵A+B=,∴2B=π-2A,cos2B=-cos2A.

fAB)=cos2Asin2A+3=2cos(2A+)+3=2cos2(A+)+3.

从而(只要写出一个符合条件的向量p即可).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={a,b,-(a+b)},a∈R,b∈R,,集合P={1,0,-1},映射f:x→x表示把集合M中的元素x映射到集合P中仍为x,则以a,b为坐标的点组成的集合S有子集
64
64
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={a,b,-(a+b)},a∈R,b∈R,,集合P={1,0,-1},映射f:x→x表示把集合M中的元素x映射到集合P中仍为x,则以a,b为坐标的点组成的集合S有元素(  )个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)定义向量
OM
=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx的“相伴向量”为
OM
=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设g(x)=3sin(x+
π
2
)+4sinx,求证:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)为圆C:(x-2)2+y2=1上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(coswx,sinwx)
n
=(coswx,
3
coswx)
,其中0<w<2,函数f(x)=
m
n
-
1
2
,直线x=
π
6
为其图象的一条对称轴.
(Ⅰ)求函数f(x)的表达式及其单调递减区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,已知f(
A
2
)=1
,b=2,S△ABC=2
3
,求a值.

查看答案和解析>>

同步练习册答案