精英家教网 > 高中数学 > 题目详情
已知a,b为正数,n∈N*,证明不等式:
证明:∵a,b为正数,∴不等式等价于

当a≥b时,a-b≥0,an≥bn,即bn-an≤0,∴(a-b)( bn-an)≤0,  
当a<b时,a-b<0,an<bn,即bn-an>0,∴(a-b)( bn-an)<0,
因此≤0

∴原不等式成立。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知矩阵M=
0
1
1
0
N=
0
1
-1
0
.在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到的曲线F,求曲线F的方程.
(2)在极坐标系中,已知圆C的圆心坐标为C (2,
π
3
),半径R=
5
,求圆C的极坐标方程.
(3)已知a,b为正数,求证:
1
a
+
4
b
9
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、m、n、x、y均为正数,且a≠b,若a、m、b、x成等差数列,a、n、b、y成等比数列,则有(  )
A、m>n,x>yB、m>n,x<yC、m<n,x<yD、m<n,x>y

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知a,b为两个正数,且a>b,设a1=
a+b
2
,b1=
ab
,当n≥2,n∈N*时,an=
an-1+bn-1
2
,bn=
an-1bn-1

(Ⅰ)求证:数列{an}是递减数列,数列{bn}是递增数列;
(Ⅱ)求证:an+1-bn+1
1
2
(an-bn);
(Ⅲ)是否存在常数C>0使得对任意n∈N*,有|an-bn|>C,若存在,求出C的取值范围;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)(不等式选做题) 
已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为
2
2

查看答案和解析>>

同步练习册答案