精英家教网 > 高中数学 > 题目详情
10.已知点P(tanα,cosα)在第三象限,则角α的终边在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

分析 由点P(tanα,cosα)在第三象限可得tanα与cosα的符号,进一步得到α所在象限.

解答 解:∵点P(tanα,cosα)在第三象限,
∴$\left\{\begin{array}{l}{tanα<0}\\{cosα<0}\end{array}\right.$,
由tanα<0得,α为第二或第四象限角;由cosα<0得,α为第二或第三象限角或x轴的负半轴.
∴角α的终边在第二象限.
故选:C.

点评 本题考查三角函数的象限符号,考查了象限角的概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数y=$\frac{{\sqrt{x+1}}}{x}$+ln(2-x)的定义域是{x|-1≤x<0或0<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知b=3$\sqrt{2}$,c=3$\sqrt{3}$,B=45°,求A,C和a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一位老师与四位学生站一排照相,教师必须站在正中的站法有(  )
A.4种B.5种C.24种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设i为虚数单位,n为正整数.试用数学归纳法证明(cosx+isinx)n=cosnx+isinnx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=lnx-$\frac{1}{2}$ax2-2x的单调递减区间为(m,m+2),则a的值为$\frac{1-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an},{bn}满足a1=b1=6,a2=b2=4,且数列{an-$\frac{n^2}{2}$}(n∈N*)是等差数列,数列{bn-2}(n∈N*)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,$\frac{1}{2}$),若存在,求出k,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在用反证法证明命题“已知a,b,c∈(0,2),求证a(2-b),b(2-c),c(2-a)不可能都大于1”时,反证假设时正确的是(  )
A.假设a(2-b),b(2-c),c(2-a)都小于1B.假设a(2-b),b(2-c),c(2-a)都大于1
C.假设a(2-b),b(2-c),c(2-a)都不大于1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设直角三角形中两锐角为A和B,则cosAcosB的取值范围是(  )
A.(0,$\frac{1}{2}$]B.(0,1)C.[$\frac{1}{2}$,1)D.[$\frac{\sqrt{3}}{4}$,1)

查看答案和解析>>

同步练习册答案