精英家教网 > 高中数学 > 题目详情
5.设i为虚数单位,n为正整数.试用数学归纳法证明(cosx+isinx)n=cosnx+isinnx.

分析 利用数学归纳法即可证明.

解答 解:①当n=1时,左边=cosx+isinx=右边,此时等式成立;
②假设当n=k时,等式成立,即(cosx+isinx)k=coskx+isinkx.
则当n=k+1时,(cosx+isinx)k+1=(cosx+isinx)k(cosx+sinx)
=(coskx+isinkx)(cosx+isinx)=coskxcosx-sinkxsinx+(coskxsinx+sinkxcosx)i
=cos[(k+1)x]+isin[(k+1)x],
∴当n=k+1时,等式成立.
由①②得,(cosx+isinx)n=cosnx+isinnx.

点评 本题考查了数学归纳法和三角函数的两角和差的正弦余弦公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=2sin(2x+\frac{π}{6})+a+1$.
(1)若$x∈[{0,\frac{π}{2}}]$且a=1时,求f(x)的最大值和最小值.
(2)若x∈[0,π]且a=-1时,方程f(x)=b有两个不相等的实数根x1、x2,求b的取值范围及x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把病人送到医院看病的过程用框图表示,则此框图称为(  )
A.工序流程图B.程序流程图C.组织流程图D.程序步骤图

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是线段PB的中点.
(1)证明:AC⊥平面PBC;
(2)若点P到平面ACE的距离为$\frac{\sqrt{6}}{3}$,求三棱椎P-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图在三棱柱ABC-A1B1C1中,侧面AA1C1C是矩形,且侧面AA1C1C⊥底面AA1B1B,M是AB的中点,若AA1=2,AC=1,∠A1AB=60°,CB1⊥A1B.
(1)求证:AC1∥平面CMB1
(2)求三棱锥M-CC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P(tanα,cosα)在第三象限,则角α的终边在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,O坐标原点,以OF直径的圆与双曲线的一条渐近线相交于O,A两点,且|OA|=2|AF|,则双曲线的离心率等于(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{3}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列框图中是流程图的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在(0,+∞)上的单调函数f(x),对?x∈(0,+∞),都有f[f(x)-log2x]=3,则方程f(x)-f′(x)=2的解所在的区间是(  )
A.(0,$\frac{1}{2}$)B.(1,2)C.($\frac{1}{2}$,1)D.(2,3)

查看答案和解析>>

同步练习册答案