分析 利用数学归纳法即可证明.
解答 解:①当n=1时,左边=cosx+isinx=右边,此时等式成立;
②假设当n=k时,等式成立,即(cosx+isinx)k=coskx+isinkx.
则当n=k+1时,(cosx+isinx)k+1=(cosx+isinx)k(cosx+sinx)
=(coskx+isinkx)(cosx+isinx)=coskxcosx-sinkxsinx+(coskxsinx+sinkxcosx)i
=cos[(k+1)x]+isin[(k+1)x],
∴当n=k+1时,等式成立.
由①②得,(cosx+isinx)n=cosnx+isinnx.
点评 本题考查了数学归纳法和三角函数的两角和差的正弦余弦公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$) | B. | (1,2) | C. | ($\frac{1}{2}$,1) | D. | (2,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com