精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是线段PB的中点.
(1)证明:AC⊥平面PBC;
(2)若点P到平面ACE的距离为$\frac{\sqrt{6}}{3}$,求三棱椎P-ACD的体积.

分析 (1)取AB的中点M,连接CM,由已知可得:四边形CDAM是正方形,CM=MA=MB,可得AC⊥CB,PC⊥底面ABCD,于是PC⊥AC,即可证明AC⊥平面PBC;
(2)在平面PBC内作PH⊥CE,垂足为H.由(1)可得:平面PBC⊥平面PBC,在平面PBC内作PH⊥CE,垂足为H,可得PH⊥平面ACE,PH=$\frac{\sqrt{6}}{3}$.设PC=t,S△PCE=$\frac{1}{2}$S△PBC=$\frac{\sqrt{2}}{4}$t.又S△PCE=$\frac{1}{2}$CE•PH,解得t,即可得到VP-ACD=$\frac{1}{3}$•S△ACD•PC.

解答 (1)证明:取AB的中点M,连接CM,
∵AM=$\frac{1}{2}$AB=1=CD=AD,AB⊥AD,AB∥CD,
∴四边形CDAM是正方形,CM=MA=MB,
∴AC⊥CB,
∵PC⊥底面ABCD,
∴PC⊥AC,又PC∩BC=C,
∴AC⊥平面PBC;
(2)解:在平面PBC内作PH⊥CE,垂足为H.
由(1)可得:平面PBC⊥平面AEC,
在平面PBC内作PH⊥CE,垂足为H,则PH⊥平面ACE,
∴PH=$\frac{\sqrt{6}}{3}$.
设PC=t,则PB=$\sqrt{2+{t}^{2}}$,CE=$\frac{1}{2}$PB=$\frac{1}{2}\sqrt{2+{t}^{2}}$,
又S△PBC=$\frac{1}{2}$•$\sqrt{2}$t,S△PCE=$\frac{1}{2}$S△PBC=$\frac{\sqrt{2}}{4}$t.
由S△PCE=$\frac{1}{2}$CE•PH,
得$\frac{1}{2}$•$\frac{\sqrt{2+{t}^{2}}}{2}$•$\frac{\sqrt{6}}{3}$=$\frac{\sqrt{2}}{4}$t,解得t=1,即PC=1.
∴VP-ACD=$\frac{1}{3}$•S△ACD•PC=$\frac{1}{3}×\frac{1}{2}×1×1×1=\frac{1}{6}$.

点评 本小题主要考查空间线面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设等差数列{an}中,a10=23,a25=-22.
(1)设Sn为等差数列{an}的前n项的和,求使Sn取最大值时的n的值.
(2)求使Sn<0的最小的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设θ为第二象限角,若$tan({θ+\frac{π}{4}})=\frac{1}{3}$,则tanθ=-$\frac{1}{2}$;sinθ+cosθ=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知b=3$\sqrt{2}$,c=3$\sqrt{3}$,B=45°,求A,C和a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=ax2+x+$\frac{1}{2}$有两个零点,则a的取值范围为(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一位老师与四位学生站一排照相,教师必须站在正中的站法有(  )
A.4种B.5种C.24种D.120种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设i为虚数单位,n为正整数.试用数学归纳法证明(cosx+isinx)n=cosnx+isinnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an},{bn}满足a1=b1=6,a2=b2=4,且数列{an-$\frac{n^2}{2}$}(n∈N*)是等差数列,数列{bn-2}(n∈N*)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,$\frac{1}{2}$),若存在,求出k,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知从某飞船带回的某种植物种子每粒成功发芽的概率都为$\frac{1}{3}$,某植物研究所进行该种子的发芽试验,每次试验种一粒种子,每次试验结果相互独立.假定某次试验种子发芽则称该次试验是成功的,如果种子没有发芽,则称该次试验是失败的.若该研究所共进行四次试验,设ξ表示四次试验结束时试验成功的次数与失败的次数之差的绝对值.
(1)求ξ=2的概率;
(2)求ξ≥2的概率.

查看答案和解析>>

同步练习册答案