精英家教网 > 高中数学 > 题目详情
3.设等差数列{an}中,a10=23,a25=-22.
(1)设Sn为等差数列{an}的前n项的和,求使Sn取最大值时的n的值.
(2)求使Sn<0的最小的n的值.

分析 (1)利用等差数列的通项公式可得公差d,利用等差数列的前n项和公式即可得出;
(2)由Sn<0,解出即可;

解答 解:(1)设等差数列{an}的公差为d,
∵a10=23,a25=-22,
∴a25=a10+15d,
∴-22=23+15d,解得d=-3.
∴an=a10+(n-10)d=23-3(n-10)=53-3n.
令an<0,解得$n>\frac{53}{3}$=17+$\frac{2}{3}$,
因此该数列从第18项开始为负数.
当n=17时,Sn取的最大值.
(2)由(1)可得:Sn=$\frac{n(50+53-3n)}{2}$=$\frac{-3{n}^{2}+103n}{2}$.
由Sn<0,可得-3n2+103n<0,解得$n>\frac{103}{3}$=34+$\frac{1}{3}$,
∴使Sn<0的最小的正整数n=35.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是(  )
A.a,b,c都是奇数B.a,b,c中至少有两个是偶数
C.a,b,c都是偶数D.a,b,c中至多有一个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正四面体S-ABC的所有棱长都为2,则它的体积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)的导函数为f′(x)=x2+2cosx且f(0)=0,则不等式f(2-a2)+f(-a)>0的解集为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;         
(2)求证:$\sum_{k=1}^n{\frac{1}{S_k}}<\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=2sin(2x+\frac{π}{6})+a+1$.
(1)若$x∈[{0,\frac{π}{2}}]$且a=1时,求f(x)的最大值和最小值.
(2)若x∈[0,π]且a=-1时,方程f(x)=b有两个不相等的实数根x1、x2,求b的取值范围及x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.先阅读下列结论的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证a12+a22≥$\frac{1}{2}$.
【证明】构造函数f(x)=(x-a12+(x-a22
则f(x)=2x2-2(a1+a2)x+a12+a22
=
2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0.
所以△=4-8(a12+a22)≤0,从而得a12+a22≥$\frac{1}{2}$,
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是梯形,AB⊥AD,AB∥CD,AB=2,AD=CD=1,E是线段PB的中点.
(1)证明:AC⊥平面PBC;
(2)若点P到平面ACE的距离为$\frac{\sqrt{6}}{3}$,求三棱椎P-ACD的体积.

查看答案和解析>>

同步练习册答案