分析 (1)由已知中已知a1,a2∈R,a1+a2=1,求证a12+a22≥$\frac{1}{2}$,及整个式子的证明过程,我们根据归纳推理可以得到一个一般性的公式,若a1,a2,…,an∈R,a1+a2+…+an=1,则a12+a22+…+an2≥$\frac{1}{n}$.
(2)但此公式是由归纳推理得到的,其正确性还没有得到验证,观察已知中的证明过程,我们可以类比对此公式进行证明.
解答 解:(1)若a1,a2,…,an∈R,a1+a2+…+an=1,
求证:a12+a22+…+an2≥$\frac{1}{n}$,
(2)证明:构造函数
f(x)=(x-a1)2+(x-a2)2+…+(x-an)2
=nx2-2(a1+a2+…+an)x+a12+a22+…+an2
=nx2-2x+a12+a22+…+an2
因为对一切x∈R,都有f(x)≥0,所以△=4-4n(a12+a22+…+an2)≤0
从而证得:a12+a22+…+an2≥$\frac{1}{n}$
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).(3)对归纳得到的一般性结论进行证明.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 33 | C. | 31 | D. | 32 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{19}{3}$ | B. | 5 | C. | 4 | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com