精英家教网 > 高中数学 > 题目详情
12.先阅读下列结论的证法,再解决后面的问题:已知a1,a2∈R,a1+a2=1,求证a12+a22≥$\frac{1}{2}$.
【证明】构造函数f(x)=(x-a12+(x-a22
则f(x)=2x2-2(a1+a2)x+a12+a22
=
2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0.
所以△=4-8(a12+a22)≤0,从而得a12+a22≥$\frac{1}{2}$,
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

分析 (1)由已知中已知a1,a2∈R,a1+a2=1,求证a12+a22≥$\frac{1}{2}$,及整个式子的证明过程,我们根据归纳推理可以得到一个一般性的公式,若a1,a2,…,an∈R,a1+a2+…+an=1,则a12+a22+…+an2≥$\frac{1}{n}$.
(2)但此公式是由归纳推理得到的,其正确性还没有得到验证,观察已知中的证明过程,我们可以类比对此公式进行证明.

解答 解:(1)若a1,a2,…,an∈R,a1+a2+…+an=1,
求证:a12+a22+…+an2≥$\frac{1}{n}$,
(2)证明:构造函数
f(x)=(x-a12+(x-a22+…+(x-an2
=nx2-2(a1+a2+…+an)x+a12+a22+…+an2
=nx2-2x+a12+a22+…+an2
因为对一切x∈R,都有f(x)≥0,所以△=4-4n(a12+a22+…+an2)≤0
从而证得:a12+a22+…+an2≥$\frac{1}{n}$

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).(3)对归纳得到的一般性结论进行证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知sinαcosα=$\frac{1}{8}$,且α是第三象限角,求$\frac{1-co{s}^{2}α}{cos(\frac{3π}{2}+α)+cosα}$-$\frac{sin(α-\frac{7π}{2})+sin(2015π-α)}{ta{n}^{2}α-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设等差数列{an}中,a10=23,a25=-22.
(1)设Sn为等差数列{an}的前n项的和,求使Sn取最大值时的n的值.
(2)求使Sn<0的最小的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\frac{{\sqrt{x+1}}}{x}$+ln(2-x)的定义域是{x|-1≤x<0或0<x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组:{2,4},{6,8,10,12},{14,16,18,20,22,24},….则2 014位于第(  )组.
A.30B.33C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=ax3+9x2+6x-7,若f′(-1)=3,则a的值等于(  )
A.$\frac{19}{3}$B.5C.4D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设θ为第二象限角,若$tan({θ+\frac{π}{4}})=\frac{1}{3}$,则tanθ=-$\frac{1}{2}$;sinθ+cosθ=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知b=3$\sqrt{2}$,c=3$\sqrt{3}$,B=45°,求A,C和a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an},{bn}满足a1=b1=6,a2=b2=4,且数列{an-$\frac{n^2}{2}$}(n∈N*)是等差数列,数列{bn-2}(n∈N*)是等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)是否存在k∈N+,使ak-bk∈(0,$\frac{1}{2}$),若存在,求出k,若不存在,说明理由.

查看答案和解析>>

同步练习册答案