精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知点在椭圆C 上,且椭圆C的离心率

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作直线交椭圆C于点A.B.ABQ的垂心为T,是否存在实数m ,使得垂心Ty轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.
(Ⅰ) (Ⅱ)

试题分析:(Ⅰ) ,,
椭圆C的方程为——————————————2分
(Ⅱ)假设存在实数m,使得垂心T在Y轴上。
当直线斜率不存在时,设,则则有,所以
 可解得(舍)      ——————4分
当直线斜率存在时,设
设直线方程为:斜率为,
,
即:  
————————————6分
消去可得: 
  
  =——————8分
代入可得(
   
--10分
 
综上知实数m的取值范围——————————12分
点评:对于直线与圆锥曲线的综合问题,往往要联立方程,同时结合一元二次方程根与系数的关系进行求解;而对于最值问题,则可将该表达式用直线斜率k表示,然后根据题意将其进行化简结合表达式的形式选取最值的计算方式
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设定点M(3,)与抛物线=2x上的点P的距离为,P到抛物线准线l的距为,则取最小值时,P点的坐标为
A.(0,0)B.(1,C.(2,2)D.(,-

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。

(I)求椭圆的方程;
(Ⅱ)求线段MN的长度的最小值;
(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这
样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果过曲线上点处的切线平行于直线,那么点的坐标为
A.B.C.D.(

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:的焦点坐标为),点M()在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在平面直角坐标系中,点到两定点F1和F2的距离之和为,设点的轨迹是曲线.(1)求曲线的方程;   (2)若直线与曲线相交于不同两点(不是曲线和坐标轴的交点),以为直径的圆过点,试判断直线是否经过一定点,若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,为椭圆上的一个动点,弦分别过焦点,当垂直于轴时,恰好有

(Ⅰ)求椭圆的离心率;
(Ⅱ)设.
①当点恰为椭圆短轴的一个端点时,求的值;
②当点为该椭圆上的一个动点时,试判断是否为定值?
若是,请证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案