精英家教网 > 高中数学 > 题目详情
已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.
(1)  (2)采用联立方程组结合韦达定理和中点公式来证明。
(3)

试题分析:(1) ; () 由方程组
,消y得方,因为直线交圆两点,所以D>0,即,设C(x1 ,y1 )、D(x2 ,y2 , D中点坐标为(x0 ,y0 ),则,由方组,消y得方(k2 -k1 )xp,又因为,所以,故E为CD的中点;
(3) 作点P1、P2的步骤:°求出PQ的中点,2°求出直线OE的斜率,3由知E为CD的中点,根据()可得CD的斜率,4°从而得直线CD的方程:, 5°将直线CD与圆
Γ的方程联立,方程组的解即为点P1 P2的坐标.
使P1、P2存在,必须点在椭圆内,所以,化简得,,又0<q <p,即,所以,故q 的取值范围是.
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的前提是要求学生对基础知识有相当熟练的把握。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.

(Ⅰ)求椭圆方程;
(Ⅱ)当时,求面积;
(Ⅲ)求取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=x2在点M()处的切线的倾斜角是(   )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的一条渐近线方程为,则此双曲线的离心率为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;
(2)若=2·,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于AB两点,若为正三角形,则该椭圆的离心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点在椭圆C 上,且椭圆C的离心率

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作直线交椭圆C于点A.B.ABQ的垂心为T,是否存在实数m ,使得垂心Ty轴上.若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案