精英家教网 > 高中数学 > 题目详情
(本小题满分13分)
已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.

(Ⅰ)求椭圆方程;
(Ⅱ)当时,求面积;
(Ⅲ)求取值范围.
(Ⅰ) ;(Ⅱ)  ;(Ⅲ)

试题分析:(Ⅰ) 
∴椭圆方程为           4分
(Ⅱ)设,
,在 中,由余弦定理得:
 
         7分
              9分
(Ⅲ)设 ,则 ,即 
 ,∴
         11分
 ,∴
         13分
点评:解答时注意以下的转化:⑴若直线与圆锥曲线有两个交点,对待交点坐标是“设而不求”的原则,要注意应用韦达定理处理这类问题; ⑵平面向量与解析几何综合题,遵循的是平面向量坐标化,应用的是平面向量坐标运算法则还有两向量平行、垂直来解决问题,这就要求同学们在基本概念、基本方法、基本能力上下功夫.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设点到直线的距离与它到定点的距离之比为,并记点的轨迹为曲线
(Ⅰ)求曲线的方程;
(Ⅱ)设,过点的直线与曲线相交于两点,当线段的中点落在由四点构成的四边形内(包括边界)时,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与曲线的交点的个数是        个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点到双曲线的一条渐近线的距离为,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,设点分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为

(1)求椭圆的方程;
(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆上有n个不同的点:P1,P2, ,Pn,椭圆的右焦点为F,数列{|PnF|}是公差大于的等差数列,则n的最大值是 ( )
A.198B.199
C.200D.201

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,若直线轴交于点,与椭圆交于不同的两点,且。(14分)
(1)求椭圆的方程;
(2)求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。

查看答案和解析>>

同步练习册答案