精英家教网 > 高中数学 > 题目详情
椭圆上有n个不同的点:P1,P2, ,Pn,椭圆的右焦点为F,数列{|PnF|}是公差大于的等差数列,则n的最大值是 ( )
A.198B.199
C.200D.201
C

试题分析:由椭圆方程可知最小为,最大值为,设数列首项为1,第n项为3,公差为
,n最大值为200
点评:椭圆上的点到焦点的最大距离为,最小距离为,转化为数列首项,末项,利用通项公式得到的关系
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.

(Ⅰ)求椭圆方程;
(Ⅱ)当时,求面积;
(Ⅲ)求取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则的值为 (    )
A.5B. 6 C. 4D. 9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知椭圆()过点,其左、右焦点分别为,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
已知椭圆)过点(0,2),离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过定点(2,0)的直线与椭圆相交于两点,且为锐角(其中为坐标原点),求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2="2px" (p0)的焦点F的直线交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3.则此抛物线的方程为(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与抛物线相交于两点,F为抛物线的焦点,若,则k的值为(   )。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

同步练习册答案