精英家教网 > 高中数学 > 题目详情
直线与曲线的交点的个数是        个.
3

试题分析:当 等价于 代入可知5x=24,可知交点个数为1个,当 等价于 代入可知,则可知满足交点的个数有2个,那么综上可知,交点个数一共有3个,答案为3.
点评:此题考查了此题考查了直线与椭圆,双曲线的位置关系,做题时应认真审题,找出内在联系,做题时应认真审题,找出内在联系
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆的离心率,且短半轴为其左右焦点,是椭圆上动点.

(Ⅰ)求椭圆方程;
(Ⅱ)当时,求面积;
(Ⅲ)求取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的左右焦点为,P为双曲线右支上
的任意一点,若的最小值为8a,则双曲线的离心率的取值范围是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系O中,直线与抛物线=2相交于AB两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C的焦点为F,准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于AB两点,若,则的值      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆(a>b>0)的两焦点为F1、F2,若椭圆上存在一点Q,使∠F1QF2=120º,椭圆离心率e的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.

(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点,构造直线分别交准线于两点,构造直线.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 (      )
A.B.2倍C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的中心为顶点,右焦点为焦点的抛物线方程是     .

查看答案和解析>>

同步练习册答案