精英家教网 > 高中数学 > 题目详情
在平面直角坐标系O中,直线与抛物线=2相交于AB两点。
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由。
(1)设过点T(3,0)的直线l交抛物线=2x于点A(x1,y1)、B(x2,y2). 当直线l的斜率不存在时A(3,)、B(3,-),∴当直线l的斜率存在时,设直线l的方程为y=k(x-3),其中k≠0.ky2-2y-6k=0,则y1y2=-6. 又∵x1=y12, x2=y22,
=x1x2+y1y2=="3." 综上所述, 命题是真命题.
(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).”,假命题

试题分析:(1)设过点T(3,0)的直线l交抛物线=2x于点A(x1,y1)、B(x2,y2).
当直线l的斜率不存在时,直线l的方程为x=3,此时,直线l与抛物线相交于A(3,)、B(3,-),∴
当直线l的斜率存在时,设直线l的方程为y=k(x-3),其中k≠0.
ky2-2y-6k=0,则y1y2=-6. 又∵x1=y12, x2=y22
=x1x2+y1y2==3.
综上所述, 命题“......”是真命题.
(2)逆命题是:“设直线l交抛物线y2=2x于A、B两点,如果,那么该直线过点T(3,0).”…10分,该命题是假命题.  例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为y = (x+1),而T(3,0)不在直线AB上.
点评:直线与圆锥曲线相交时,常联立方程组,整理为关于x的二次方程,利用韦达定理找到根与系数的关系,通过设而不求的方法转化所求问题;四种命题中原命题与逆否命题真假性一致,逆命题与否命题真假性一致
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直线与椭圆交于两点,已知
,若且椭圆的离心率,又椭圆经过点
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点坐标是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P为椭圆上一点,且∠PF1F2=30o,∠PF2F1=45o,其中F1,F2为椭圆的两个焦点,则椭圆的离心率e的值等于(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,椭圆C1: ="1" (a>b>0)的左、右焦点分别为F1、F2, F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)直线l∥OM,与C1交于A、B两点,若·=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P在抛物线上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

圆C的圆心在y轴上,且与两直线l1;l2均相切.
(I)求圆C的方程;
(II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与曲线的交点的个数是        个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点到双曲线的一条渐近线的距离为,则该双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案