(本题满分12分)
已知数列
为公差不为
的等差数列,
为前
项和,
和
的等差中项为
,且
.令
数列
的前
项和为
.
(Ⅰ)求
及
;
(Ⅱ)是否存在正整数
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
(Ⅰ)
, ![]()
(Ⅱ)当
可以使
成等比数列.
【解析】
![]()
试题分析:(Ⅰ)因为
为等差数列,设公差为
,则由题意得
整理得![]()
所以
……………3分
由![]()
所以
……………5分
(Ⅱ)假设存在
由(Ⅰ)知,
,所以![]()
若
成等比,则有
………8分
,。。。。。(1)
因为
,所以
,……………10分
因为
,当
时,带入(1)式,得
;
综上,当
可以使
成等比数列.……………12分
考点:本题考查了数列的通项公式及前N项和的求法
点评:高考中中的数列解答题考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.因此在高考复习的后期,要特别注意加强对由递推公式求通项公式、求有规律的非等差(比)数列的前n项和等的专项训练.
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com