精英家教网 > 高中数学 > 题目详情
已知△ABC的周长为4(
2
+1),且sinB+sinC=
2
sinA.
(1)求边长a的值;
(2)若S△ABC=3sinA,求角A的大小(结果用反三角函数值表示).
考点:正弦定理,反三角函数的运用
专题:解三角形
分析:(1)利用正弦定理,将角转化为边之间的关系,利用周长即可求出a的值.
(2)利用三角形的面积公式,求出b,c的关系,利用余弦定理即可求出A的大小.
解答: 解:(1)∵sinB+sinC=
2
sinA,
∴由正弦定理得,b+c=
2
a,(*)
∵a+b+c=4(
2
+1),
∴解得a=4;
(2)由S△ABC=
1
2
bcsinA=3sinA,得bc=6,
两边平方(*)式,求得b2+c2=20,
由余弦定理,cosA=
b2+c2-a2
2bc
=
20-16
2×6
=
4
12
=
1
3

故A=arccos
1
3
点评:本题主要考查正弦定理和余弦定理的应用,要求熟练掌握正弦定理和余弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两机床加工同一种零件,抽检得到它们加工后的零件尺寸x(单位:cm)及个数,如下表:
零件尺寸x 1.01 1.02 1.03 1.04 1.05
零件个数y 3 7 8 9 3
7 4 4 4 a
由表中数据得y关于x的线性回归方程为y=-91+l00x(1.01≤x≤1.05),其中合格零件尺寸为1.03±0.0l(cm).
(Ⅰ)完成下面列联表,并判断是否有99%的把握认为加工零件的质量与甲、乙有关;
合格零件数 不合格零件数 合计
合计
(Ⅱ)从甲、乙加工后尺寸大于1.03cm的零件中各取1个,求恰好取到2个都是不合格零件的概率.附:参考公式及临界值表.
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知四点A(
2
3
),B(-2,0),C(
6
,1),D(-
2
,-
3
)中有且只有三点在椭圆E: 
x2
a2
+
y2
b2
=1(a>b>0)上.
(1)求椭圆E的方程;
(2)若P是圆x2+y2=12上的一个动点,过动点P作直线l1、l2,使得l1、l2与椭圆E都相切,求证:l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-2
的定义域为A,函数g(x)=
2
x
(1≤x≤2)的值域为B.
(Ⅰ)求A∩B;
(Ⅱ)若C={y|a<y<2a-1},且C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的方程为y=ax2-1,直线l的方程为y=
x
2
,点A(3,-1)关于直线l的对称点在抛物线上.
(1)求抛物线的方程;
(2)已知P(
1
2
,1),点F(0,-
15
16
)是抛物线的焦点,M是抛物线上的动点,求|MP|+|MF|的最小值及此时点M的坐标;
(3)设点B、C是抛物线上的动点,点D是抛物线与x轴正半轴交点,△BCD是以D为直角顶点的直角三角形.试探究直线BC是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某超市进行促销活动,规定消费者消费每满100元可抽奖一次.抽奖规则:从装有三种只有颜色不同的球的袋中随机摸出一球,记下颜色后放回,依颜色分为一、二、三等奖,一等奖奖金15元,二等奖奖金10元,三等奖奖金5元.活动以来,中奖结果统计如图所示.消费者甲购买了238元的商品,准备参加抽奖.以频率作为概率,解答下列各题.
(Ⅰ)求甲恰有一次获得一等奖的概率;
(Ⅱ)求甲获得20元奖金的概率;
(Ⅲ)记甲获得奖金金额为X,求X的分布列及期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1过点A(1,
3
2
),离心率为
1
2
,左右焦点分别为F1、F2.过点F1的直线l交椭圆于A、B两点.
(1)求椭圆C的方程.
(2)当△F2AB的面积为
12
2
7
时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

点M是边长为2
2
的正方形ABCD内或边界上一动点,N是边BC的中点,则
AN
AM
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有
 
条.

查看答案和解析>>

同步练习册答案