精英家教网 > 高中数学 > 题目详情
如果平面的一条斜线和它在这个平面上的射影的方向向量分别是那么这条斜线与平面所成的角是 ____________

试题分析:根据题意可知,由于已知平面的一条斜线和它在这个平面上的射影的方向向量分别是,那么结合向量的数量积公式可知,,可知向量的夹角为,即为这条斜线与平面所成的角是。故答案为
点评:对于斜线与平面所成的角冠军艾女士对于平面的射影的确定,然后结合法向量与平面的斜向量坐标关系,结合数量积公式得到夹角。属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在多面体中,平面∥平面 ⊥平面,,
 ,

(Ⅰ)求证:平面;
(Ⅱ)求证:∥平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面,能判定//的条件是(    )
A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面是边长为2的正方形,,且,中点.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不重合的平面,给定以下条件:
内不共线的三点到的距离相等;②内的两条直线,且
是两条异面直线,且
其中可以判定的是(  )
A.①B.②C.①③D.③

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在四棱锥中,底面是正方形.已知.

(Ⅰ)求证:
(Ⅱ)求四棱锥的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正四棱锥S-ABCD中,的中点,P点在侧面△SCD内及其边界上运动,并且总是保持.则动点的轨迹与△组成的相关图形最有可有是图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,棱长为2的正方体中,E,F满足

(Ⅰ)求证:EF//平面AB
(Ⅱ)求证:EF

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案