精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,在多面体中,平面∥平面 ⊥平面,,
 ,

(Ⅰ)求证:平面;
(Ⅱ)求证:∥平面
(Ⅲ)求二面角的余弦值.
(Ⅰ)平面∥平面,,又四边形为平行四边形, ,平面
(Ⅱ)设的中点为,连接,则,∴四边形是平行四边形,∴,由(Ⅰ)知,为平行四边形,∴,∴,∴,又平面,故 ∥平面
(Ⅲ)-

试题分析:(Ⅰ)平面∥平面,平面平面,平面平面,   ………1分
四边形为平行四边形, ……2分
平面……3分

(Ⅱ)设的中点为,连接,则
,∴四边形是平行四边形…………4分
,由(Ⅰ)知,为平行四边形,∴,∴,
∴四边形是平行四边形,…………5分
,又平面,故 ∥平面;…………6分

(Ⅲ)由已知,两两垂直,建立如图的空间坐标系,则

设平面的法向量为,则
,则,而平面的法向量

由图形可知,二面角的余弦值-.……………………12分
点评:高考中常考查空间中平行关系与垂直关系的证明以及几何体体积的计算,这是高考的重点内容.证明的关键是熟练掌握并灵活运用相关的判定定理与性质定理.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面,l是直线,给出下列命题:
①若,则;  ②若
③若l上存在两点到的距离相等,则; ④若
其中正确的命题是(    )
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面分别是的中点.

(1)求证:∥平面
(2)若上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知四棱锥的底面为平行四边形,分别是棱的中点,平面与平面交于,求证:

(1)平面
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在长方体中,分别是面,面的中心,则所成的角为(    )
A.  B.    C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图:

(1)求的大小;
(2)当时,判断的形状,并求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果平面的一条斜线和它在这个平面上的射影的方向向量分别是那么这条斜线与平面所成的角是 ____________

查看答案和解析>>

同步练习册答案