精英家教网 > 高中数学 > 题目详情
是三个不重合的平面,l是直线,给出下列命题:
①若,则;  ②若
③若l上存在两点到的距离相等,则; ④若
其中正确的命题是(    )
A.①②B.②③C.②④D.③④
C

试题分析:①若,则,错误;③若l上存在两点到的距离相等,则平行或相交,错误;故排除选项A、B、D,选C
点评:熟练掌握线面平行的判定和性质定理是解决此类问题的关键,属基础题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。

(I)求证:A1B∥平面AMC1
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2 DE=2,M为AD中点.

(Ⅰ) 证明
(Ⅱ) 若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:
(Ⅲ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC=1,E为PD的中点.

(1) 求证:CE∥平面PAB;
(2) 求PA与平面ACE所成角的大小;
(3) 求二面角E-AC-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,是两条不同的直线,,,是三个不同的平面.有下列四个命题:
①若,则;②若,则
③ 若,则;④ 若,则
其中错误命题的序号是(      )
A.①④B.①③C.②③④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知六棱锥PABCDEF的底面是正六边形,平面ABC,给出下列结论:①;②平面平面PBC;③直线平面PAE;④;⑤直线PD与平面PAB所成角的余弦值为
其中正确的有                (把所有正确的序号都填上)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在多面体中,平面∥平面 ⊥平面,,
 ,

(Ⅰ)求证:平面;
(Ⅱ)求证:∥平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面,能判定//的条件是(    )
A.分别平行于直线B.分别垂直于直线
C.分别垂直于平面D.内有两条直线分别平行于

查看答案和解析>>

同步练习册答案