精英家教网 > 高中数学 > 题目详情
12.若函数f(x)=x+$\frac{a}{x}$有极值,则a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,-1]

分析 由f(x)=x+$\frac{a}{x}$,求导f′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,由题意可知:f′(x)=0有两个不相等的实数根,即可求得a的取值范围.

解答 解:函数f(x)=x+$\frac{a}{x}$,
f′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,
函数f(x)=x+$\frac{a}{x}$存在极值点,
则f′(x)=0有两个不相等的实数根,即a>0,
故答案选:B.

点评 本题考查利用导数研究函数的极值的,导函数极值存在条件,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.直线l经过点P(1,1)且与线C:y=x3相切,若直线l不经过第四象限,则直线l方程是3x-4y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点.
(Ⅰ)求常数a,b的值;
(Ⅱ)求函数f(x)的极大值与极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.对于可导函数f(x),f′(x0)=0并不是f(x)在x=x0处有极值的充分条件.对于可导函数f(x),x=x0是f(x)的极值点,必须具备①f′(x0)=0,②在x0两侧,f′(x)的符号为异号,所以f′(x0)=0只是f(x)在x0处有极值的必要条件,但不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知m∈R.若函数f(x)=x3-3(m+1)x2+12mx+1在[0,3]上无极值点,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=$\frac{2x}{1+{x}^{2}}$的极值点和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知x∈(1,+∞),函数f(x)=ex+2ax(a∈R),函数g(x)=|$\frac{e}{x}$-lnx|+lnx,其中e为自然对数的底数.
(1)若a=-$\frac{{e}^{2}}{2}$,求函数f(x)的单调区间;
(2)证明:当a∈(2,+∞)时,f′(x-1)>g(x)+a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设m,n∈R,若直线l:2mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且坐标原点O到直线l的距离为$\sqrt{3}$,则△AOB的面积S的最小值为(  )
A.$\frac{1}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.二项式(x+$\frac{1}{2x}$)8的展开式中x4项的系数为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案